KANDI RAJ COLLEGE – DEPARTMENT OF MATHEMATICS – INTERNAL EXAMINATION – 5TH SEMESTER

Full marks = 10 + 10 + 10 + 10

ANSWER EACH PART IN SEPARATE ANSWER-SCRIPT:

	PART – 1	<mark>F.M. = 10</mark>
(1)	Form a partial differential equation from, $z = f(x^2 - y^2)$.	[2]
(2)	Find the partial differential equation of all spheres having center in the xy – plane and radius λ .	[2]
(3)	Define first order partial differential equation of linear, semi-linear, quasi-linear and non-linear type.	[2]
(4)	Solve: $y^2p - xyq = x(z - 2y)$.	[2]
(5)	Show that the equation $z_{xx} - x^2 z_{yy} = 0$, $(x \neq 0)$ is hyperbolic and find its characteristics.	[2]

	PART – 2	F.M. = 10
(1)	Determine the number of elements of order 3 in a non-cyclic group of order 57.	[4]
(2)	Show that the product of two distinct p -Syllow subgroups of a group G , can never be a subgroup of G .	[3]
(3)	Prove that the center $Z(G)$ of G is characteristic in G.	[3]

	PART – 3	<mark>F.M. = 10</mark>
(1)	Find the basic feasible solutions of the system of equations:	[3]
	$x_1 + 2x_2 + 3x_3 = 6$	
	$2x_1 + x_2 + 4x_3 = 3$	
	$x_1, x_2, x_3 \ge 0$	
(2)	Solve by graphical method:	[3]
	<i>Minimize</i> $z = x_1 + x_2$	
	Subject to $5x_1 + 9x_2 \le 45$	
	$x_1 + x_2 \ge 2$	
	$x_1 \leq 4$	
	$x_1, x_2 \ge 0$	
(3)	Solve by simplex method:	[4]
	$Maximize \ z = 2x_2 + x_3$	
	Subject to $x_1 + x_2 - 2x_3 \le 7$	
	$-3x_1 + x_2 + 2x_3 \le 3$	
	$x_1, x_2, x_3 \ge 0$	

PART – 4

Answer any TWO (2) questions from below:

(1) If the joint probability density of X and Y is given by,

$$f(x,y) = \begin{cases} \frac{2}{3}(x+2y), & 0 < x < 1, \\ 0, & elsewhere \end{cases}$$

Find the conditional mean and conditional variance of X, given $Y = \frac{1}{2}$. If a random sample of size n = 20 from a normal population with variance $\sigma^2 = 225$, has (2) mean $\bar{X} = 64.3$, construct 95% confidence interval for the population mean μ . Given that P(Z > 1.96) = 0.025, where Z is normal (0,1) variate.

If X and Y are standardized random variable, and $r(aX + bY, bX + aY) = \frac{1+2ab}{a^2+b^2}$, find r(X, Y), the [5] (3) correlation coefficient between X and Y.

Dated: 14.03.2021

.0

F.M. = 10

[5]

[5]