Full Marks: CC - 5 = 10; CC - 6 = 10; CC - 7 = 10; SEC - 1 = 05 [for MATHEMATICS HONOURS STUDENTS]

Full Marks: HGE - 1 = 10 [Only for students OTHER THAN MATHEMATICS HONOURS]

For students of MATHEMATICS HONOURS:

Answer CC-5, CC-6, CC-7 & SEC-1 in separate answer scripts and upload them separately

	CC-5	10
1.	Answer any 2 (TWO) questions:	
	A function $f:[0,1] \to \mathbb{R}$ be defined by, $f(x) = \begin{cases} x, & x \text{ is } rational \text{ in } [0,1] \\ 1-x, & x \text{ is } irrational \text{ in } [0,1] \end{cases}$	5
	Show that f is continuous at $1/2$ and discontinuous at every other points in $[0,1]$.	
2.	Use Lagrange's Mean Value theorem to prove that $\frac{2}{\pi} < \frac{\sin x}{x} < 1$ for $0 < x < \frac{\pi}{2}$.	5
3.(i)	Define an open set in a metric space (X, d) .	1+4
(ii)	Prove that a subset U of a metric space (X,d) is open if and only if for each point $x \in U$, there is an open ball B (not necessarily x as its centre) such that $x \in B \subseteq U$.	
	CC - 6	10
1.	Let G be a multiplicative group and $S = \{x^2 : x \in G\}$.	2+1
	Examine if S is a subgroup of G . If not, then under what condition will it become a subgroup of G .	
2.	If $(\mathbb{Q}, +)$ denote the additive group of rational numbers and $(\mathbb{Q}_{>0}, \times)$ denote the multiplicative group of positive rational numbers, then prove that $(\mathbb{Q}, +)$ and $(\mathbb{Q}_{>0}, \times)$ are not isomorphic to each other.	3
3.	If $G = \langle a \rangle$ and $ a = 18$, find the inverse of a^9 .	1+3
	Let G be a finite group and $a, b \in G$. Show that the elements ab and ba have the same order.	
	CC - 7	10
1.	Derive Newton-Raphson formula and write down its merits and demerits	5
2.	State and prove the Lagrange's interpolation formula.	5
	SEC-1	05
1.	If p and q are true and r and s are false, find the truth value of $\{\sim (p \land q) \lor r\} \lor \{([\sim p \lor q] \lor \sim r) \land s\}$	2
2.	Examine for tautology and contradiction: (i) $(p \land q) \rightarrow (p \rightarrow q)$; (ii) $(p \lor q) \land (\sim p)$	2
3.	Translate into symbolic form: No student in the class can speak English or knows Hindi.	1

For students of OTHER HONOURS:

	HGE – 1	10
	Answer any 2 (TWO) questions:	
1.(i)	Examine the nature of discontinuity of f at 1, where $f(x) = x - [x]$, $0 < x < 2$.	2
(ii)	Evaluate, $\lim_{x\to 0} (1+x)^{1/x}$	3
2.	Find the radius of curvature of the ellipse $x^2/a^2 + y^2/b^2 = 1$.	5
3.	If f is differentiable on $[0,1]$ show by Cauchy's mean value theorem that the equation	5
	f(1) - f(0) = f'(x)/2x has at least one solution in (0,1).	