Kandi Raj College – Department of Mathematics – Internal Examination – 3rd Semester – Program course

Full Marks: GCC - T - 3 = 10 and SEC - T - 1 = 05 [Only for students opting for Mathematics as SEC]

GCC – T – 3	<mark>- 10</mark>
Real Analysis	10
Answer any TWO questions:	10

1. Show that the sequence $\{u_n\}$ where $u_n = \frac{3n}{n+1}$ is monotonic increasing and bounded above. **05** Also show that it is convergent and find its limit.

2. Examine t	he convergence of the series	$5\frac{1+2}{2^3}+$	$-\frac{1+2+3}{3^3}$ -	$-\frac{1+2+3+4}{4^3}+$	0!	5
--------------	------------------------------	---------------------	------------------------	-------------------------	----	---

3. Show that the sequence $\{f_n\}$, where $f_n(x) = x^{n-1}(1-x)$ converges uniformly in the interval [0,1]. **05**

	SEC – T – 1 [ONLY FOR STUDENTS OPTING FOR MATHEMATICS AS SEC]	05
	Use separate answer script for SEC	
	Logic & Sets	05
	Answer any ONE (1) question:	
•	What is the difference between a "Contradiction" and a "Tautology"? Which of the following is a "Tautology" or "Contradiction": (a) $(p \to q) \lor (p \to r)$; (b) $p \to (q \lor r)$.	1+2+2
	Use truth table to show $a_1(n)(q) = (a_1 n) \wedge (a_2 q)$	212

2. Use truth table to show: $\sim (p \lor q) \equiv (\sim p) \land (\sim q)$. Without using truth table show: $(p \land q) \lor (\sim p) = \sim p \lor q$. **2+3**