748/Math.

UG/6th Sem/MATH-H-CC-T-13/21

U.G. 6th Semester Examination - 2021

MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-13

Full Marks: 60

Time: $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **ten** questions:

- $2 \times 10 = 20$
- a) Find the solution of the equation |z| z = 1 + 2i.
- b) Find the value of $(1+i)^{10} + (1-i)^{10}$.
- c) If $f(z) = z^2 + 2$, then find the minimum value of |f(z)| over the closed region $|z| \le 1$.
- d) At what point the function $f(z) = |z|^2 + i\overline{z} + 1$ is differentiable?
- e) If an analytic function f(z) is such that

- Re $\{f'(z)\}=2y$, f(1+i)=2, then find the imaginary part of f(z).
- f) Evaluate $\int_{0}^{1+i} (x^2 iy) dz$ along the path y = x.
- g) Find the value of $\int_C \frac{\cos z}{z(z^2+9)} dz$, where C:|z|=2.
- h) Show that open interval (0,1) of reals with usual metric is an incomplete metric space.
- i) Either prove or disprove: In a metric space (X, d), if $\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$ then $\{x_n\}$ is a Cauchy sequence in X.
- j) Does a homeomorphism preserve completeness? Justify.
- k) Either prove or disprove: Every connected proper subset of R with usual metric is contained in some compact subset of R.
- 1) Give an example of a subset in a metric space which is bounded without being compact.
- m) Show that the set X = R with the metric

$$d(x, y) = \frac{|x-y|}{1+|x-y|}$$
 is bounded.

- n) Give example of subsets of *R* which are disjoint but not separated.
- Show that $f(z) = |z^2|$ is continuous everywhere but nowhere differentiable except at the origin.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) Let f(z) = u + iv be analytic in a domain D and |f(z)| is constant in D. Show that f(z) is constant in D.
 - b) If f(z) is analytic, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2.$
 - c) Evaluate $\int_C \frac{z}{(z+i)(9-z^2)} dz$ where C is the circle |z| = 2.
 - d) Prove that a sequentially compact metric space is totally bounded.
 - e) Let $f:(X,d) \to (Y,\rho)$ be a one one and

- onto continuous function, where (X, d) is compact. Show that $f^{-1}: Y \to X$ is continuous.
- f) Show that $\left\{ \left(1 + \frac{1}{n} \right)^n \right\}$ is a convergent sequence in real number space with usual metric, and hence obtain $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n}$.
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Let $f(z) = \sqrt{|xy|}$. Show that f'(0) does not exist but the C-R equations are satisfied at the origin.
 - ii) Let f be analytic in a simply connected region R and let α , β be any two points in R. Prove that $\int_{\alpha}^{\beta} f(z)dz$ is independent of the path joining α and β in R.
 - b) i) Examine if $f(x)=x^2$ is a uniformly continuous function over the space R of all reals with usual metric.

- ii) Obtain the closure of the set $\left\{ (x, y) : y = \sin \frac{1}{x} \text{ and } 0 < x \le 1 \right\} \text{ in } R^2$ with usual metric. 5+5
- c) i) Evaluate $\int_C \frac{1}{(z-1)^3} dz$, where C is the line segment from z = 1 + i to z = 3 + 2i.
 - ii) Let $f:(X, d) \to (Y, \rho)$ be a continuous function where (X, d) is compact. Show that $f(\overline{A}) = \overline{f(A)}$.
