2021

CHEMISTRY

[HONOURS]

Paper: VII

Full Marks: 80

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

(Marks: 40)

1. Answer any **two** questions:

 $1\times2=2$

- a) What is the spin only magnetic moment of $[Cr(H_2O)_6]Cl_3$ in its first ligand field excited state $(t_{2g}^2e_g^1)$?
- b) Δ_0 for high spin $[FeF_6]^{3-}$ is 13900 cm⁻¹. Predict the colour of the complex ion.
- c) Identify the symmetry point group of PBrClF.
- d) What is the CFSE of $[NiCl_4]^{2-}$ in terms of $\Delta_0? \left[\mu_{so} \text{ of } \left[NiCl_4\right]^{2-} \text{ is } 2.83 \text{ B.M.}\right]$

[Turn over]

- 2. Answer any **two** questions:
 - a) Compare the magnetic moments of [NiBr₄]²⁻ and [PdCl₄]²⁻ combining the concepts of valence bond and crystal field theory.
 - b) In CuF₂ crystals Cu²⁺ ions occupy the octahedral holes. Comment on the Cu-F distances.
 - c) Write down all the symmetry elements present in D_{5d} point group.
 - d) Calculate the CFSE of high and low spin $[Cr(H_2O)_6]^{2+}$ when mean pairing energy is 23500 cm⁻¹ and Δ_0 is 13900 cm⁻¹.
- 3. Answer any **four** questions: $6 \times 4 = 24$
 - a) i) Explain whether Mn₃O₄ and Fe₃O₄ will adopt a normal spinel structure or inverse spinel structure.
 - ii) The magnetic moment of $[Fe(NCS)_2]$ (o-phenanthroline)₂] increases above 160 K. Explain. 3+3
 - b) i) Why the intensity of d-d transitions of octahedral metal complexes is of weak intensity? Compare the intensities of such transitions of

[2]

40(Sc)

- octahedral complexes with tetrahedral complexes.
- (ii) Assign the three d-d electronic transitions of (high spin) $[Cr(NH_3)_6]^{2^+}$.
- c) i) How does spin-orbit coupling influence the magnetic moment of octahedral complexes of Ni²⁺? Explain with appropriate expressions.
 - ii) Give a brief account of Curie-Weiss law. 3+3
- d) i) Assign the point group of the following: $B_3N_3H_3Cl_3 \ \, (B,B,B\text{-trichloroborazine})$ and HOCl
 - ii) By symmetry arguments discuss the dipole moments of CHCl₃, CH₃Cl and CH₂Cl₂.
 - iii) Comment on the colours of $CuSO_4.5H_2O$ and $K_2[Cu(CN)_4]$ with reasons. 2+2+2
- e) i) Mention the symmetry properties of s, p and d orbitals with respect to rotational axis and inversion centre.

- ii) Compare the Δ_0 of $[\text{Co(NH}_3)_6]^{3+}$, $[\text{Co(NH}_3)_6]^{2+}$ and $[\text{Co(NH}_3)_4]^{2+}$ with explanation.
- f) i) Although ionisation energy of $Cr^{2+}(g)$ is greater than $V^{2+}(g)$ but Cr^{2+} is stronger oxidising agent than V^{2+} . Explain. [Given Δ_0 for V^{2+} and V^{3+} are 12300 and 18600 cm⁻¹ respectively whereas Δ_0 for Cr^{2+} and Cr^{3+} are 14100 and 17000 cm⁻¹ respectively]
 - ii) Define Jahn-Teller theorem. Which of the following high spin complexes would you expect to exhibit Jahn-Teller distortions? Give reasons.

$$[Cr(NH_3)_6]^{3+}$$
, $[MnCl_6]^{3-}$ and $[Fe(H_2O)_6]^{3+}$ 3+3

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Write down all the symmetry operations of C_{2v} point group. Prove that S_2 is nothing but an inversion operation. Does the mer-[Ru(CO)₃Cl₃] possesses C_3 axis? Give reason.

- ii) Draw the splitting pattern of d orbital in square pyramidal crystal field.
- iii) Give a brief outline of experimental determination of magnetic susceptibility.
- iv) Draw the ground state Orgel diagram for tetrahedral metal complexes of d³ and d⁷ metal ion. Hence predict the probable d-d electronic transitions.

(1+2+1)+1+3+2

[Turn over]

- b) i) Explain the pattern of variation of hydration enthalpy of M²⁺ ions where M is the transition metal of 1st transition series. [Assume octahedral coordination only].
 - ii) "[CuCl₄]²⁻ is a square planar complex."- True or false? Give reasons using VB theory.
 - iii) Can you explain the bonding of low spin octahedral complexes of Co²⁺ metal ion according to VB theory? Give reason in support of your answer.
 - iv) Comment on the anomalous magnetic moment of $[EuCl_6]^{4-}$. $3+2\frac{1}{2}+2+2\frac{1}{2}$

GROUP-B

(Marks : 40)

- 5. Answer any **two** questions:
 - a) Draw the structure of Tungsten (V) chloride.

 $1\times2=2$

- b) Draw the structural formula of Tebbe's reagent.
- c) How many Fe-Fe bonds do you expect in Fe₂(CO)₉.
- d) Mention the main feature of electronic spectrum of haemoglobin.
- 6. Answer any **two** questions: $2 \times 2 = 4$
 - a) Draw the structural formula of $[W_2Cl_9]^{3-}$ and comment on the W-W bond order.
 - b) Give two chemical equations of preparing organozine compounds by two methods.
 - c) Why does solution of Grignard reagent conduct electricity?
 - d) Draw the structure of protoporpyrin.
- 7. Answer any **four** questions: $6 \times 4 = 24$
 - a) Draw the active site structure of chlorophyll. What is its role in synthesis of glucose from CO₂ and HO?
 - b) i) Drawing appropriate chemical structure show the coordination

[6]

behaviour of ATP in biology. Why the metal complex of ATP is important in biological processes? Discuss with an example.

- ii) Give a brief account on sulphide complexes of M_0 . 4+2
- c) i) Draw the structural formula of Vaska's complex. Give one chemical reaction catalysed by Vaska's complex. Give the catalytic cycle.
 - ii) Compare the oxidation states and coordination behaviour of Pd and Pt. $(1+\frac{1}{2}+2\frac{1}{2})+2$
- d) i) Explain the structure of methyl lithium.
 - ii) " $(\eta^5 C_5H_5)_2$ TiCl can act as good catalyst."— explain by drawing the structure of the complex. 2+4
- e) Explain the working of the Na⁺-K⁺ pump with appropriate illustration.
- f) i) Why ring nitration in ferrocene cannot be carried out at ease? How will you prepare the nitro derivative of ferrocene?
 - ii) Name one chelating drug in chelation

[Turn over]

therapy in metal ion detoxification. Draw the struture of the drug.

 $1\frac{1}{2}+1\frac{1}{2}+3$

- 8. Answer any **one** question: $10 \times 1 = 10$
 - a) i) What is meant by hapticity of alkene ligands? What is the hapticity of cyclopentadienyl in-ferrocene? How the C_p can be alkylated in ferrocene? Give chemical equations.
 - ii) Write down the principle of a method of Nb and Ta separation.
 - iii) Why olefines are utilised for stabilisation of lower oxidation states of transition metals?
 - iv) Write a note on Wilson disease.

$$(1+\frac{1}{2}+1\frac{1}{2})+3+2+2$$

- b) i) Describe the mechanism of O₂ transport by myoglobin.
 - ii) What is the significance of Oxygen-Haemoglobin Dissociation Curve (ODC)?
 - iii) Write a short note on arsenic poisoning.
 - iv) How would you prepare MoCl₅ from MoOCl₃? 3+2+3+2
