2021

MATHEMATICS

[GENERAL]

Paper: IV

Full Marks: 100

Time: 3 Hours

The figures in the right-hand margin indicate marks.

1. Answer any **six** questions:

 $1\times6=6$

- a) What is the position of C.G. of a square lamina?
- b) State conservation of linear momentum.
- c) In a central orbit prove that $r^2 = constant$.
- d) What do you mean by apse in a central orbit?
- e) What is escape velocity?
- f) Find the sum of the approximated numbers 32.629, 72.3, 443.18695, 13.217 each being corrected to its last figure but no farther.
- g) Write down Newton's forward interpolation formula.
- h) Convert $(1011)_2$ to the equivalent decimal number.
- i) Define parallelogram law of forces.

- 2. Answer any **eleven** questions:
 - State the forces which appear in the principal of virtual work.
 - b) State any two laws of friction.
 - A particle thrown vertically upward takes t seconds to rise to a height h and t' seconds is the subsequent time to reach the ground again.

 Show that $h = \frac{1}{2}gtt'$.
 - d) If radial velocity is proportional to the transverse velocity, find the path in polar coordinates.
 - e) Write down the differential equation of S.H.M. Hence write down the periodic time.
 - f) A gun of mass 1500 lbs fired a shot of 15 lbs with velocity 1000 ft/sec. How far the gun will recoil up a smooth inclined planes of inclination 1 in 8?
 - g) Find the horsepower of an engine draws a train at an uniform rate v ft/sec against a resistance R poundal.
 - h) Round up the following numbers correct upto six significant figures 24.564986, 27.483554.

i) From the following data form the difference table:

X	-1	0	1	2	3	4
f(x)	-2	1	0	1	10	33

- j) What is the formula to compute the root of the equation f(x) = 0 by Newton-Raphson method?
- k) Write down Trapezoidal rule for integration.
- 1) Prove that $\Delta \nabla = \Delta \nabla$ where Δ and ∇ have their usual meaning.
- m) Multiply the numbers $(101.11)_2$ by $(11.101)_2$ and convert the result into decimal.
- n) What is flow chart?
- o) Three forces P, Q, R act along the line x = 0, y = 0 and $x \cos \theta + y \sin \theta = p$. Find the magnitude of resultant.

3. Answer **seven** questions: $6 \times 7 = 42$

- a) Define centre of gravity. Find the centre of gravity of a semi-circular lamina.
- b) A bullet of mass m moving with velocity v strikes a block of mass M which is free to move in the direction of motion of the bullet and is embedded in it. Show that a portion

$$\frac{M}{M+n}$$
 of the K.E. is lost.

- c) A heavy uniform chain, of length 2l, hangs over a pulley, the length l+c being at one side and l-c at the other. Show that the chain will slip off the pulley in time $\left(\frac{l}{g}\right)^{\frac{1}{2}}\log\frac{l+\sqrt{l^2-c^2}}{c}.$
- Find radial and cross radial components of velocity and acceleration.
- e) A particle moves freely in a parabolic path given by $y^2 = 4ax$ under a force always perpendicular to its axis. Find the law of force.
- f) Establish Newton's forward interpolation formula. When is this formula used?
- g) Establish numerical differentiation formula based on either forward or backward formula.
- h) Subtract: $(10101)_2$ – $(10001)_2$ by any method.
- i) Convert the decimal number 17 and 37 into their binary equivalents and obtain their product using binary arithmatic.
- j) State and prove virtual work for a system of coplanar force.

- 4. Answer any **three** questions: $10 \times 3 = 30$
 - a) i) Establish Lagrange's polynomial interpolation formula. If $x_0, x_1, ..., x_n$ are the interpolating points and $l_i(x)(i=0, 1, ..., n)$ are the Lagrangian functions then show that $\sum_{i=0}^{n} l_i(x) = 1$.
 - ii) Describe the method of fixed point iteration to find the root of the equation f(x) = 0. 5+5
 - b) i) Show that any system of forces acting on a rigid body can be reduced to a single force together with a couple whose axis is along the direction of the force.
 - ii) A rough wire is in the form of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. A small bead on the wire is in the limiting equilibrium when at a distance $\frac{b}{2}$ from the major axis under the action of a force whose line of action passes through the centre of the ellipse. Find the coefficient of friction.

5+5

- c) i) Write a FORTRAN program to sum the series $y = x + \frac{x^3}{3} + \frac{x^5}{5} + ... + \frac{x^{15}}{15}$ when x = 0.1, 0.3, 0.5, 0.7, 0.9. The term having values less than 10^{-12} should not included in the sum.
 - ii) A Fibonnaci sequence is defined as follows 0, 1, 1, 2, 3, 5, ... $(T_{n+1} = T_n + T_{n-1}, n \ge 1)$. Design an algorithm and draw a flow chart to find all numbers of this sequences which are ≤ 500 . 5+5
- d) i) Find the tangential and normal components of velocity and acceleration of a particle moving along a plane curve.
 - ii) Write down Kepler's laws of planetary motion. Also find the law of force when a particle describes the curve $p^2 = ar$ under a force F to the pole. 5+5
- e) i) The horsepower required a steamer of mass M tones at its maximum speed V feet/sec. The resistance is proportional to the square of the speed and the engine exerts a constant

propeller thrust at all speeds. If in time t from rest the steamer acquired a velocity of v feet per second, then prove that

$$t = \frac{112}{55} \cdot \frac{MV^2}{Hg} \log_e \frac{V + v}{V - v}$$
.

ii) If the displacement of a moving point at any time be given by a equation of the form $x = a \cos kt + b \sin kt$ then show that the point executes S.H.M. If a = 3, b = 4, k = 2, find the period. 5+5

134(Sc)