2021

MATHEMATICS

[HONOURS]

Paper: VI

Full Marks: 100

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Symbols and Notations have their usual meaning.

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) Show that $\lim_{(x,y)\to(0,0)} \frac{2xy^2}{x^2+y^4}$ does not exist.
 - b) Examine the convergence of $\int_0^1 \frac{dx}{\sqrt{1-x}}$.
 - c) If L[F(t)] = f(p) then prove that for $\lambda > 0$, $L[F(\lambda t)] = \frac{1}{\lambda} f(\frac{p}{\lambda}).$
 - d) Show that $z = f(x^2y)$, where f is differentiable satisfying $x\left(\frac{\partial z}{\partial x}\right) = 2y\left(\frac{\partial z}{\partial y}\right)$.
 - e) Show that the function f defined as

$$f(x) = \frac{1}{2^n}$$
, when $\frac{1}{2^{n+1}} < x \le \frac{1}{2^n}$, $(n = 0, 1, 2, ...)$
= 0 when $x = 0$,

is integrable on [0, 1].

[Turn over]

- Find the radius of convergence of the series $x + \frac{x^2}{2^2} + \frac{2!}{2^3}x^3 + \frac{3!}{4^4}x^4 + \dots$
- Show that the sequence $\{f_n\}$, where $f_n(x) = \tan^{-1} nx, x \ge 0$ is uniformly convergent in any interval [a, b], a > 0, but is only pointwise convergent is [0, b].
- 2. Answer any **ten** questions: $2 \times 10 = 20$
 - a) If f is bounded and integrable on $[-\pi, \pi]$ and if a_n , b_n are its Fourier coefficients then prove that $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ converges.
 - b) Show that f(xy, z-2x) = 0 satisfies, under suitable conditions, the equation $x \frac{\partial z}{\partial x} y \frac{\partial z}{\partial y} = 2x$. Find those conditions.
 - c) Find the stationary points of the function $f(x, y, z) = (x + y + z)^3 3(x + y + z) 24xyz + 27.$
 - d) Evaluate $\iint_{R} [x+y] dx dy$, over the rectangle R = [0,1;0,2], where [x+y] denotes the greatest integer less than or equal to (x+y).
 - Locate and classify the singular points of the equation $x^3(x^2-1)y'' + 2x^4y' + 4y = 0$.

- f) Compute the integral $\int_c xydx$ along the arc of the parabola $x = y^2$ from (1, -1) to (1, 1).
- g) Obtain the differential equation of all conics whose axes coincide with the axes of coordinates.
- h) Use the convolution theorem to evaluate

$$L^{-1}\left\{\frac{1}{(p+1)(p-1)}\right\}$$

 Show that the repeated limits exist at the origin and are equal but the simultaneous limit does not exist for the following function

$$f(x,y) = \begin{cases} 1, & \text{if } xy \neq 0 \\ 0 & \text{if } xy = 0 \end{cases}$$

- j) The function f is defined on $[0,\infty[$ by $f(x)=(-1)^{n-1}, n-1 \le x < n, n \in N$. Show that the integral $\int_0^\infty f(x) dx$ does not converge.
- k) Compute $\int_{-1}^{1} f dx$, where f(x) = |x|.
- 1) If f is integrable on [a, b], then show that f² is also integrable on [a, b].
- 3. Answer any **five** questions: $6 \times 5 = 30$

Solve the equation

a)

 $\frac{d^2y}{dx^2} + (x-1)^2 \frac{dy}{dx} - 4(x-1)y = 0 \quad \text{in series}$ about the point x=1.

- b) i) Solve: $(y^2 + z^2 x^2)p 2xyq + 2zx = 0$
 - ii) Show that the point of infinity is a regular singular point of the equation $x^2y'' + (3x-1)y' + 3y = 0$. 4+2
- c) i) Prove that the set C[a, b] of all real-valued functions continuous on the interval [a, b] with the function d defined by

$$d(f,g) = \left(\int_a^b f(x) - g(x)^2 dx\right)^{\frac{1}{2}} \text{ is a metric}$$
space.

- ii) Show that in any metric space (x, d) the intersection of a finite number of open sets is open. 4+2
- d) i) If f_x and f_y are both differentiable at a point (a, b) of the domain of definition of a function f, then prove that

$$f_{xy}(a,b) = f_{yx}(a,b)$$

ii) Let
$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}$$
, $(x,y) \neq (0,0)$
 $f(0,0) = 0$.

Then show that at the origin $f_{xy} \neq f_{yx}$.

4+2

e) Show that $\int_{2}^{\infty} \frac{\cos x}{\log x} dx$ is conditionally convergent.

f) Obtain the Fourier series in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ of the function f given by

$$f(x) = \begin{cases} x - [x] - \frac{1}{2} \text{ when } x \text{ is not an integer} \\ 0, \text{ otherwise} \end{cases}$$

where [x] is the greatest integers $\leq x$.

- g) Prove that the function $f(x,y) = \sqrt{|xy|}$ is not differentiable at the point (0,0) but that f_x and f_y both exist at the origin and have the value 0. Hence deduce that these two partial derivatives are continuous except at the origin. 4+2
- h) Find the maximum and minimum values of $x^2 + y^2 + z^2$ subject to the conditions $\frac{x^2}{4} + \frac{y^2}{5} + \frac{z^2}{25} = 1 \text{ and } z = x + y.$
- 4. Answer any **three** questions: $15 \times 3 = 45$
 - a) i) Solve in series the differential equation $(2x+x^3)y''-y'-6xy=0$. For what values of x, the series so obtained are convergent?
 - ii) Evaluate: $\iint_{E} x^{m-1} y^{n-1} (1-x-y)^{p-1} dx dy, m \ge 1, n \ge 1, p \ge 1$

- where E is the region bounded by x = 0, y = 0, x + y = 1.
- iii) Prove that a series of functions Σf_n will converge uniformly and absolutely on [a,b] if there exists a convergent series ΣM_n of positive numbers such that for all $x \in [a,b]$, $|f_n(x)| \leq M_n$ for all n.

(4+2)+6+3

- b) i) Show that continuous image of a compact set is compact.
 - ii) Let (X, d) be a metric space. Then show that any disjoint pair of closed sets in X can be separated by disjoint open sets in X.
 - iii) Evaluate $\iint_E \sin\left(\frac{x-y}{x+y}\right) dxdy$, where E is the region bounded by the co-ordinate axes and x+y=1 in the first quadrant.

5+5+5

- c) i) State and prove Taylor's theorem for functions of two variables with remainder after n terms.
 - ii) If $f(x,y) = \sqrt{|xy|}$ then prove that Taylor's expansion about the point (x,x) is not valid in any domain which includes the

origin.

iii) Discuss the convergence of $\int_0^1 \log \sqrt{x} dx$ and hence evaluate it.

(1+5)+4+(2+3)

- d) i) Prove that a bounded function f is integrable on [a, b] iff for every $\varepsilon > 0$ there exists a partition P of [a, b], such that $U(P,f)-L(P,f)<\varepsilon$.
 - ii) If f and g are integrable on [a,b] and g keeps the same sign over [a, b], then show that there exists a number μ lying between the bounds of f such that

$$\int_a^b fg \, dx = \mu \int_a^b g \, dx \ .$$

- iii) Prove that $\lim_{n \to \infty} I_n$, where $I_n = \int_0^{\delta} \frac{\sin nx}{x} dx, n \in \mathbb{N} \text{ exists and equal}$ to $\pi/2$.
- e) i) The roots of the equation in λ $(\lambda x)^3 + (\lambda y)^3 + (\lambda z)^3 = 0$ are u, v and w. Then prove that $\frac{\partial (u, v, w)}{\partial (x, y, z)} = -2 \frac{(y z)(z x)(x y)}{(v w)(w u)(u v)}.$
 - ii) If $f(x,y,z) = (a^2x^2 + b^2y^2 + c^2z^2)/x^2y^2z^2,$

where $ax^2 + by^2 + cz^2 = 1$ and a, b c are positive, show that the minimum value of f(x,y,z) is given by

$$x^{2} = \frac{u}{2a(u+a)}, y^{2} = \frac{u}{2b(u+b)}, z^{2} = \frac{u}{2c(u+c)}$$
where u is the positive root of the equation
$$u^{3} - (bc + ca + ab)u - 2abc = 0.$$

- iii) If V is a function of two variables x and y and $x = r \cos \theta$, $y = r \sin \theta$ then prove that $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \frac{\partial^2 V}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{1}{r} \frac{\partial V}{\partial r}$.

 5+6+4
- f) i) Solve: $z(x+y)\frac{\partial z}{\partial x} + z(x-y)\frac{\partial z}{\partial y} = x^2 + y^2.$
 - ii) Use Laplace transforms to solve the following problem:

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = e^{-t}, \ y(0) = y'(0) = 0.$$

iii) Solve the partial differential equation px + qy = pq by Charpits method.