U.G. 6th Semester Examination - 2021

MATHEMATICS

[HONOURS] **Course Code : MATH-H-CC-T-14** (Ring Theory and Linear Algebra II)

Time : $2\frac{1}{2}$ Hours Full Marks: 60 The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

- Answer any **ten** questions: $2 \times 10 = 20$ 1.
 - Does the equation $x^2 + y^2 = 3z^2$ has a non-zero i) solution in Z? Justify your answer.
 - ii) Determine all ring homomorphism from Z_{12} to Z_{30} .
 - Let F be a field. Show that the field of iii) quotients of F is ring isomorphic to F.
 - Define dual basis. iv)
 - Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator defined v) by T(a,b,c) = (a+b, b+c, 0).
 - [Turn Over]

- Examine whether coordinate axes and vi) coordinate planes are T-invariant sub-spaces or not.
- vii) In $Z_3[x]$, show that the distinct polynomials $x_4 + x$ and $x_2 + x$ determine the same function from Z_2 to Z_2 .
- viii) Let $x = \langle 1-i, 4 \rangle$ and $y = \langle 2+3i, 4-5i \rangle$ in \mathbb{C}^2 , find $\langle x, y \rangle$ and ||x||.
- ix) Determine the number of irreducible polynomials over Z_p of the form $x^2 + ax + b$.
- Let $f(x) = x^3 + 2x + 4$ and g(x) = 3x + 2 in x) $Z_{5}[x]$. Determine the quotient and remainder upon dividing f(x) by g(x).
- Does there exist any linear operator T with no xi) T-invariant subspaces? Justify.
- xii) Show that every plane passing through the origin in \mathbb{R}^3 can be expressed as the null space of a vector in $(\mathbb{R}^3)^*$.
- xiii) Find a polynomial with integer coefficients that has 1/2 and -1/3 as zeros.
- xiv) Find the remainder upon dividing 98! by 101.

[2]

749/Math.

- xv) Show that $x^4 + 1$ is irreducible over Q but reducible over R.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - i) Construct a field of order 25.
 - ii) Let $Z_3[i] = \{a+ib: a, b \in Z_3\}$. Show that the field $Z_3[i]$ is ring-isomorphic to the field $Z_3[x]/\langle x^2+1\rangle$.
 - iii) Prove or disprove that the field of real numbers is ring-isomorphic to the field of complex numbers.
 - iv) Show that the only ring automorphism of the real numbers is the identity mapping.
 - v) Let $P_n(R)$ be the set of all real polynomials of degree less than *n*, with the inner product defined by

$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x)g(x) dx$$

Construct an orthonormal basis of the subspaces $P_3(R)$ from 1, x, x^2 . Hence express $f(x) = 1 + 2x + 3x^2$ as a linear combination of the above basis.

[3]

- vi) In \mathbb{C}^2 show that $\langle x, y \rangle = xAy^*$ is in fact an inner product. Also find that $\langle x, y \rangle$ for x = (1+i, 2-3i) and y = (2-i, 3+2i), where $A = \begin{pmatrix} 1 & -i \\ i & 2 \end{pmatrix}$.
- 3. Answer any **two** questions: $10 \times 2=20$
 - i) Let *F* be a field and let *a* be a non-zero element of *F*.
 - a) If a f(x) is irreducible over *F*, prove that f(x) is irreducible over *F*.
 - b) If f(ax) is irreducible over *F*, prove that f(x) is irreducible over *F*.
 - c) If f(x+a) is irreducible over *F*, prove that f(x) is irreducible over *F*.

4+3+3

- ii) a) Are there any non-constant polynomials in Z[x] that have multiplicative inverse? Explain your answer.
 - b) Let p be a prime. Are there any nonconstant polynomials in $Z_p[x]$ that have multiplicative inverses? Explain your answer. 5+5

749/Math.	
-----------	--

749/Math.

- iii) a) Let V be an inner product space and W be a finite dimensional subspace of it. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$, but $\langle x, y \rangle \neq 0$.
 - b) Let $V = R^3$ and define $f_1, f_2, f_3 \in V^*$ as $f_1(x, y, z) = x - 2y, f_2(x, y, z) = x + y + z,$ $f_3(x, y, z) = y - 3z$. Prove that $\{f_1, f_2, f_3\}$ is a basis for V^* . Also find a basis for which it is the dual basis.

5+5

- iv) a) Let *R* be an integral domain. Prove that $\langle a \rangle = \langle b \rangle$ for some elements $a, b \in R$, if and only if a = ub for some unit *u* of *R*.
 - b) Let *R* be the ring of all continuous functions on [0, 1] and let *I* be the collection of functions f(x) in *R* with f(0)=0. Prove that *I* is an ideal of *R* but is not a prime ideal. 5+5