764/Phs.

UG/6th Sem/PHY-H-CC-T-14/21

U.G. 6th Semester Examination - 2021 PHYSICS

[HONOURS]

Course Code: PHY-H-CC-T-14 (Statistical Mechanics)

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any **five** questions: $2 \times 5 = 10$
 - a) What do microstates and macrostates mean for a statistical system of N particles moving in three dimensions?
 - b) Suppose 1,000 particles are distributed along a line of length 1m with a distribution function f(x) = Bx(1-x). Calculate the number of particles that lie between $0.5m \le x \le 0.50lm$. (Particle number may be fractional)
 - c) The description of the microcanonical ensemble is given in terms of N, V and the energy between E and $E+\Delta E, \Delta E << E$. Why do we need the spread ΔE in energy?

[Turn over]

- d) Define entropy in the microcanonical ensemble.
- e) What is Bose Einstein condensation?
- f) Show that for a photon gas, the density of states is proportional to $E^{\frac{1}{2}}$ where E corresponds to the energy.
- Find the number of ways in which three identical spin $\frac{1}{2}$ fermions can be distributed in two nondegenerate distinct energy levels.
- h) Distinguish between canonical and grand canonical ensembles.
- 2. Answer any **two** questions : $5 \times 2 = 10$
 - a) What are the characteristic features of liquid Helium at low temperature? What is λ transition? Why is it named so? 2+2+1
 - b) What is phase space? Draw the phase space for a linear harmonic oscillator of energy E and angular frequency ω . What is the area of the phase space? 1+2+2
 - c) What does it mean by "Degeneracy"?

 Differentiate between Maxwell-Boltzmann,
 Bose-Einstein, and Fermi-Dirac statistics.

2+3

- d) State the applicability of Saha's ionization formula. Write down its expression explaining each term. 2+3
- 3. Answer any **two** questions : $10 \times 2 = 20$
 - i) a) Write down the expressions for average number of particles in the i_{th} energy level, having energy ε_i and degeneracy g_i for Bose and Fermi distributions.
 - b) What is the value of the chemical potential for a photon gas in equilibrium and why?
 - Fermi distribution function for T = 0 K and T > 0 K. Locate the Fermi energy in the diagram.
 - d) The density of free electrons in Na is $2.5 \times 10^{28} \text{m}^{-3}$. Calculate the Fermi energy of the free electron gas and compare it with $k_B T$ for T 300 K. 3+2+2+3
 - ii) a) Give Planck's quantum postulates.
 - b) Derive Stefan's law and Wien's displacement law from Planck's law of black body radiation.

[Turn over]

- c) What is the wavelength of maximum intensity of radiation radiated from a source at temperature 3000°C? Wien's constant = 2.898×10⁻³ mK. 2+6+2
- iii) If the partition function of a system of N indistinguishable particles is given by –

$$Z(\beta) = \frac{V^{N}}{N!} \left(\frac{2\pi m k_{B}T}{h^{2}} \right)^{3N/2}$$

Calculate the Helmholtz free energy (F) for the same. Hence calculate the average energy U for the system. Using the thermodynamic relation F = U - TS, derive the Sackur-Tedrode equation. How does this equation solve Gibbs paradox? $3+2\frac{1}{2}+2\frac{1}{2}+2$

- iv) a) Discuss experimental verification of Maxwell's velocity distribution law.
 - b) What do you understand by Brownian motion?
 - c) Derive Einstein's formula for the mean square displacement of a Brownian particle.

 3+2+5
