Kandi Raj College – Department of Mathematics – Internal Examination – 6th Semester – Program course Full marks: GCC-T-06 = 10 ; AND SEC-T-4A = 05 [ONLY FOR STUDENTS OPTING FOR MATH AS SEC]

	GCC – T – 06	10
	Answer all questions:	
1.	Solve the following L.P.P by graphical method: Maximize $Z = 3x_1 + x_2$	03
	Subject to the constraints:	
	$2x_1 + x_2 \le 2$	
	$6x_1 + 2x_2 \le 9$	
	$x_1, x_2 \ge 0.$	
2.	Define convex set and show that intersection of two convex sets is also a convex set.	02
3.	Write the dual of the following L.P.P: Maximize $Z = x_1 + 2x_2 + 4x_3$	02
	Subject to,	
	$x_1 + 2x_2 + 3x_3 \le 10$	
	$x_1 + x_2 \ge 4$	
	$x_1 \leq 1$	
	x_1 , x_2 , $x_3 \ge 0$	
4.	Find the optimal strategies and value of the game whose pay-off matrix is	03
	$\begin{bmatrix} 6 & -4 \\ -1 & 3 \end{bmatrix}$	
	L-1 3 J	

	SEC – T – 04A [ONLY FOR STUDENTS OPTING FOR MATHEMATICS AS SEC]	05
1. (a)	Answer any 1(One) question: Show that $f(x)$ define by $f(x) = \begin{cases} 1 - 1 - x & 0 < x < 2 \\ 0 & elsewhere \end{cases}$ is p.d.f of a continuous random variable and find the expectation also.	05
(b)	The random variable X and Y have the joint density function	05
	$f(x,y) = \begin{cases} 6(1-x-y) & \text{for } x > 0, y > 0, x+y < 1\\ 0 & \text{elsewhere} \end{cases}$	

Find the marginal distributions of X and Y. Are X and Y independent?