U.G. 4th Semester Examination - 2021 PHYSICS

[HONOURS]

Skill Enhancement Course (SEC)

Course Code : PHY-H-SEC-T-2(A-G)

Full Marks : 20

Time: 1 Hour

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from selected Option.

OPTION-A

PHY-H-SEC-T-2A

(A) (Renewable Energy and Energy Harvesting)

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) Define Geothermal source.
 - b) Name the various models of biogas plants.
 - c) What are the main applications of a solar pond?
 - d) What are the conventional and nonconventional energy sources?
 - e) Differentiate between primary and secondary energy sources.
 - f) What are the main components of a tidal power plant?

- g) Define altitude angle.
- h) What are the factors which determine the output of a wind energy converter?
- 2. Answer any **one** question (symbols have their usual meanings): $5 \times 1=5$
 - a) i) What are the main types of OTEC power plants?
 - ii) Describe their working in brief. 2+3
 - b) With the help of a neat sketch, describe a solar heating system using water heating solar collectors. 2+3
 - c) i) Differentiate between nuclear fusion and fission.
 - ii) What is the main advantage of D-D reaction?
 - iii) What do you mean by isotopes? Give examples. 2+1+2
- 3. Answer any **one** question (symbols have their usual meanings): $10 \times 1=10$
 - a) i) Estimate the energy and power in the double basin tidal system.
 - ii) The basin area of a tidal power plant is $20 \times 10^6 \text{ m}^2$. The tidal range is 8 m, calculate the energy generation in kWh.

6+4

[Turn over]

552/Phs

(2)

- b) i) Obatin the equations for the voltages and power output of an MHD generator.
 - ii) An MHD generator has the following parameters:

Plate area = 0.20 m²,
Distance between plates = 0.4 m,
Flux density = 2 Wb/m²,
Average gas velocity = 1000 m/s,
Conductivity of the gas = 10 mho/m.
Calculate the open circuit voltage and
maximum power output. 6+4

- c) i) How biomass conversion takes place?
 - ii) Explain the process of "Photosynthesis".What are the conditions, which are necessary for it?
 - iii) What is wet and dry fermentation?
 - iv) What materials can be used for biogas generation? 2+4+2+2

OPTION-B

PHY-H-SEC-T-2B

(B) (Renewable Energy and Energy Harvesting)

GROUP-A

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) What is meant by photovoltaic effect? Where photovoltaic energy is used?
 - b) What is carbon capture technology? Write down two advantages of carbon capture technology.
 - c) Define Osmotic Pressure and Ocean Biomass.
 - d) What is solar pond? Where first solar pond was established in India?
 - e) Write down working principle of a wind turbine.
 - f) Define fossil fuel with example. Write down two limitations of fossil fuel.
 - g) What is biochemical conversion? Name two types of biomass.
 - h) Define Geothermal energy. What are geothermal resources?

GROUP-B

- 2. Answer any **one** question: $5 \times 1=5$
 - a) Define Conventional and Non-conventional form of energy. Write down all major differences between them. 2+3
 - b) What is a solar cell? Briefly explain how it works. Draw I-V characteristics of a solar cell. 1+3+1
 - c) Define Ocean Thermal energy conversion (OTEC). Explain by one method how does ocean thermal energy generate electricity? 2+3

GROUP-C

- 3. Answer any **one** question: $10 \times 1=10$
 - a) i) Explain action of Solar Cooker, Flat Plate Collector, Solar Green House.
 - ii) Write down advantage and disadvantage of solar energy. (2+2+2)+4
 - b) Write short notes on (any **two**): 5+5
 - i) Environmental issue and Renewable sources.
 - ii) Basic Principle of Linear Generator

- iii) Ocean energy potential against wind and solar
- iv) Tidal Energy
- c) i) Write down basic principle of wind energy conversion.
 - ii) Write down advantages and disadvantages of Wind power energy.
 - iii) Derive the expression for wind power. 3+4+3

OPTION-C

PHY-H-SEC-T-2C

(Radiation Safety)

GROUP-A

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) The work function of zinc is 3.6 eV. The Threshold frequency for the metal is 9×10¹⁴
 Hz. Find the value of Planck's Constant.
 - b) Define range of α particle. On what factor does range depend?
 - c) Explain with example, the terms 'Isotope'.'Isobar', 'Isotone' and 'Mirror Nuclei'.

(6)

d) What are Auger Electron?

552/Phs (5)

- e) What is Bremsstrahlung Process?
- f) Write two biological effects of ionizing radiation.
- g) Write down main characteristics of x ray.
- h) What is nuclear fission? Give one example.

GROUP-B

- 2. Answer any **one** question: $5 \times 1=5$
 - a) Define
 - i) KERMA
 - ii) Derived Air Concentration (DAC) related to Radiation. $2\frac{1}{2}+2\frac{1}{2}$
 - b) i) Explain the term 'mass defect' and 'binding energy' of a nucleus.
 - ii) The mass of hydrogen atom and neutron are 1.008142 and 1.008982 amu respectively. Calculate binding energy per nucleon of Boron -10 (mass=10.01612 amu) 2+3
 - c) Briefly explain operation of Geiger-Muller Counter (GM). What is meant by 'dead time' of a GM counter.

GROUP-C

- 3. Answer any **one** question: $10 \times 1=10$
 - a) i) Distinguish between nuclear fission and Fusion with example.
 - ii) How can the energy release in these processes be explained qualitatively with the help of packing fraction curve?
 - iii) Name different type of nuclear reactions.
 - iv) Explain what is meant by Q -value of a nuclear reaction.
 - v) Give one example each for proton and α particle induced reaction. 2+2+2+2+2
 - b) Explain briefly (with one example) for application nuclear techniques in
 - i) Medical science
 - ii) Archaeology
 - iii) Crime detection
 - iv) Mining

v)

- Art 2+2+2+2+2
- c) i) Write down Einstein's photoelectric equation and explain photoelectric effect.
 - ii) What is Compton effect? Deduce the relation between the increase in wavelength and the angle scattering.

(1+4)+(1+4)

OPTION-D PHY-H-SEC-T-2D

(Applied Optics)

GROUP-A

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) Name two laser pumping technique.
 - b) Draw a schematic for ray propagation in
 - i) Step index fiber
 - ii) graded-index fiber.
 - c) Give one example of a gas laser and one example of solid-state laser.
 - d) Describe how a transmission hologram was made.
 - e) Show that a two-level system cannot act like a laser.
 - f) Mention any two important characteristics of a laser.
 - g) Describe with energy level diagrams the phenomena of stimulated emission, and stimulated absorption in a two-level system.
 - h) What is meant by splice loss in an optical fiber?

(9)

GROUP-B

- 2. Answer any **one** question: $5 \times 1=5$
 - a) Explain the principle of Holography. Mention the name of the different types of holograms. What is a white light reflection hologram?

2+2+1

b) What is meant by the numerical aperture of an optical fiber? What factors does it depend on? Name the two semiconductors which are extensively used in semiconductor lasers.

2 + 1 + 2

c) Show at thermal equilibrium, the ratio (R) of the number of spontaneous and stimulated emission is given by $R = (exp(hn/k_BT) - 1)$. Mention some important applications of lasers. 3+2

GROUP- C

- 3. Answer any **one** question: $10 \times 1=10$
 - a) Discuss the concept of spatial frequency filtering. Show that a lens can be used as a Fourier Transformer. A Gaussian function is f(x) = C exp(-ax²), where C and a is a constant, calculate its Fourier transform (F(k)). Plot F(x) and F(k) and explain the differences.

3+3+2+2

b) What is a heterostructure semiconductor laser?
Draw the energy band diagram corresponding to the three regions of double-heterostructure laser i) when they are in contact with no bias, and ii) under forward bias.

Derive relations between Einstein's A and B coefficients. 1+2+2+5

c) Show that the time taken by a pulse to traverse a length L of the fiber is given by $\tau = L/vg = L/c$ [n(λ_0) $\lambda_0 dn/d\lambda_0$]. What is fibre optic sensors? How does Bragg fiber grating work? 5+3+2

OPTION-E

PHY-H-SEC-T-2E

(A) (Weather Forecasting)

- Answer any five questions: 1×5=5
 a) What is atmospheric window?
 b) Define thermal equator?
 - b) Define thermal equato
 - c) What is acid rain?
 - d) What do you mean by saturated vapour pressure?
 - e) Define the term humidity.
 - f) What is Solar Constant?
 - g) What is Hadley Cell?
 - h) What are 'Aerosols'?

- 2. Answer any **one** from the following questions: $5 \times 1=5$
 - a) Explain the relationship between pressure belts and planetary winds.
 - b) Discuss the Different weather forecasting Method.
 - c) Describe the origin and characteristics of tropical cyclones.
- 3. Answer any **one** from the following question:

 $10 \times 1 = 10$

- a) Write a short note Weather map, Radiation law, Geotropic wind, Global warming.
- b) Describe and account for the general wind circulation. Identify major jet streams and mention in brief their impact on surface weather condition.
- c) What is Weather forecasting? Describe the historical background of development of forecasting.

OPTION-F

PHY-H-SEC-T-2F

(B) (Weather Forecasting) GROUP-A

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) Name the instrument by which speed of wind is measured. What is the normal unit of wind speed?
 - b) Define emissive power and Absorptive power in radiation.
 - c) Write down name of all the layers by which our atmosphere is composed of.
 - d) State Kirchhoff's law of radiation.
 - e) Write down percentage composition of gas in atmosphere.
 - f) Atmospheric temperature is governed by which factors?
 - g) Define aerosol. How are they formed?
 - h) How does temperature vary in Troposphere?

GROUP-B

2. Answer any **one** question: $5 \times 1=5$

(13)

a) Define Coriolis Force. Explain how it influence wind. 2+3 b) Name different type of Temperature Sensor. Briefly discuss how they work. 2+3
c) State and Prove Stefan Boltzmann law of radiation. 1+4

GROUP-C

- 3. Answer any **one** question: $10 \times 1=10$
 - a) Write short notes on: 5+5
 - i) Ozone Depletion
 - ii) Acid Rain
 - b) i) Explain cause and effect of global warming.
 - ii) How we can control global warming?
 - iii) Define aerosol. Explain how it formed. 4+2+(2+2)
 - c) i) What are the different methods of weather forecasting?
 - ii) What are the factors should be considered during selection of meteorological station?
 - iii) Define Geostationary and Polar Orbiting Weather satellite. 2+4+4

OPTION-G

PHY-H-SEC-T-2G

(Technical Drawing)

GROUP-A

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) What is full form of CAD? Define AutoCAD.
 - b) Draw the locus of a point P equidistant from a fixed straight line AB and a fixed point F.
 - c) Name drawing instrument and accessories required for technical drawing.
 - d) What are the function of GRID and SNAP command used in AutoCAD?
 - e) Write name of two terms each, used in projection of line and planes.
 - f) Write two command for internet collaboration with AutoCad. What is the most effective command used to draw symmetrical object using AutoCAD?
 - g) Define eccentricity of a conic. What is the locus traced by a point moving along a pendulum, from one end to another, when the pendulum oscillates about an end .

(15)

- h) What are application of following lines
 - i) Projection line
 - ii) Construction line
 - iii) Centre lines
 - iv) Short Break Line?

GROUP-B

2 Answer any **one** question: $5 \times 1=5$

- a) What are the advantages of CAD? 5
- b) i) Name different methods used to construct ellipse.
 - Draw an ellipse using Eccentricity Method if distance of focus from the directrix is 70mm and eccentricity is 3/4.
 2+3
- c) i) Define Plane of Projection (POP)
 - ii) Explain Isomeric and oblique parallel projection of solid. 1+4

GROUP-C

- 3. Answer any **one** question: $10 \times 1=10$
 - a) i) Write down principle of projection in technical drawing.

- ii) Explain Orthographic projection of solids.
- iii) Name different method used in technical drawing for construction of Parabola and Hyperbola.
- iv) Define Cycloidal curves 2+2+4+2
- b) i) Mention the function of following eight AutoCAD command

L;C;PL;REC;POL;CO;REG;SC

- ii) How do you make a 3d drawing in 2d in AutoCAD?
- iii) What are dimensioning tools in AutoCAD?
- iv) Draw following circle using AutoCAD command. Centre (95,52) and radius =16 units. 4+2+2+2
- c) Write down uses of following Drafting instrument
 - i) T-square
 - ii) Set-square
 - iii) Roller Scale
 - iv) Circle Template
 - v) Lettering Template. 2+2+2+2+2