U.G. 2nd Semester Examination - 2021

CHEMISTRY

[HONOURS]

Course Code : CHEM-H-CC-T-03

(Inorganic and Physical)

Full Marks : 20

Time : 1 Hour

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Please write the answers of Group-A and Group-B in two different answer scripts.

GROUP-A

- Answer any three questions:
 - (a) What do you mean by formal potential?
 - (b) Give the full name and composition of ZR solution.
 - (c) At 80 °C, pure distilled water has [H₃O⁺] equals to 1x10⁻⁶ mol.L⁻¹. What will be the value of K_n at this temperature?
 - (d) State the theory by which the reaction 6CaO+P₄O₁₀ → 2Ca₃(PO₄)₂ may be regarded as acid-base reaction.
 - (e) Write the conjugate acid and base of HS'.
- Answer any one questions:
 - (a) Calculate the pH of 10⁻⁸ (N) HCl solution.
 - (b) Explain the observation: Cu²⁺ ion readily liberates iodine from iodide but in presence of ethylenediamine it does not. [Given: E⁰_{Cu}²⁺_{/Cu}⁺ = 0.15 V, E⁰_{Cu}²⁺_{/Cul} = 0.87 V and E⁰_{12/21} = 0.54 V.
- Answer any one questions:
 - (a) (i) In gas phase the proton affinity of FCH₂COOH is less than CICH₂COOH. Explain. (ii) 100 ml 0.1 (M) H₃PO₄ is being titrated with 0.1 (M) NaOH solution. Calculate the pH at second equivalence point. [Given: K₁ = 7.5x10⁻³, K₂ = 6.2 10⁻⁸ and K₃ = 5.0x10⁻¹³] 2+3 = 5

[Turn over]

2x1 = 2

5x1 = 5

1x3 = 3

(b) (i) Using the Latimer Diagram, calculate the E⁰ value for the reduction of HCIO to Cl⁻ in aqueous medium.

 $HClO \xrightarrow{1.67V} Cl_2 \xrightarrow{1.3} {}^{\bullet}Cl^{\circ}$

(ii) In a neutral solution $Fe(CN)_6^{3*}$ cannot liberate I_2 from KI but in presence of K_2SO_4 and $ZnSO_4$ it can do so. Explain. [Given: E^0 for $Fe(CN)_6^{3*}/Fe(CN)_6^{4*} = 0.36V$ and $I_2/2I^* = 0.54$ V.] 2+3 = 5

GROUP-B

- Answer any three questions: 1x3 = 3
 - (a) In the S-T diagram of a Carnot's cycle, the end points of a diagonal have coordinates (S2, T1) and (S1, T2). Find the work done.

 - (c) Will the order of a reaction be integral always?
 - (d) The specific rate constant for a reaction has the unit lit².mol⁻².sec⁻¹?
 - (e) What is meant by turn over number?
- 5. Answer any one questions:
 - (a) Differentiate adiabatic cooling and Joule-Thompson cooling
 - (b) The rate of a reaction of a reaction is given by logk = A B/T + clogT. Find the value of activation energy.
- Answer any one questions:
 - (a) Starting from the definition of G, Gibbs function, obtain the corresponding Maxwell relation.
 - (b) Derive Michaelis Menten equation and draw the Lineweaver-Burk plot.

5x1 = 5

2x1 = 2