U.G. 2nd Semester Examination - 2021

MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-03

(Real Analysis)

Full Marks: 30

Time: $1\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) If a is a non-zero real number, then show that $a^2 > 0$.
- b) If a and b are two real numbers and $ab \ge 0$, then prove that |a + b| = |a| + |b|.
- c) Let $S = \{1 \frac{(-1)^n}{n} : n \in \mathbb{N}\}$. Find sup S and inf S.
- d) Show that $\{r \in : r \in \mathbb{Q}\}$ is dense in \mathbb{R} .
- e) Show that \mathbb{N} is unbounded.
- f) Show that if $a, b \in \mathbb{R}$ and $a \neq b$, then there exist ε -neighbourhoods U of a and V of b such that $U \cap V = \phi$.
- g) If $a \in \mathbb{R}$ is such that $0 \le a < \varepsilon$ for every $\varepsilon > 0$, then show that a = 0.

[Turn Over]

- h) Let $S \subseteq \mathbb{R}$ and $S \neq \phi$ Show that S is bounded iff there exists a closed bounded interval I such that $S \subseteq I$.
- 2. Answer any **two** questions:

 $5 \times 2 = 10$

- a) Show that $\lim_{n\to\infty} \frac{1}{3^n} = 0$.
- b) Show that unbounded sequences are not-convergent.
- c) Let $x_n = (1+2^n)^{\frac{1}{n}}$. Show that $\lim_{n\to\infty} x_n = 2$.
- d) Let $x_1 = 2$ and $x_{n+1} = x_n + \frac{1}{x_n}$. Determine whether $\{x_n\}$ converges or diverges.
- e) Let $|x_{n+1} x_n| < \frac{1}{2^n}$ for all $n \in \mathbb{N}$. Show that $\{x_n\}$ is a Cauchy sequences.
- 3. Answer any **one** question: $10 \times 1 = 10$
 - a) Test whether the following series converges or diverges. 5+5
 - i) $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{2}}}.$
 - ii) $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}.$
 - b) Show that following series are convergent. 5+5
 - i) $\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^{\sqrt{2}}}.$
 - ii) $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}.$

c) i) Test whether the series is convergent or divergent. 5+5

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

ii) Let $\{x_n\}$ be real sequences such that $x_n \leq \frac{1}{n^2+n}$ for all $n \in \mathbb{N}$. Test the series $\sum_{n=1}^{\infty} x_n$ whether convergent or divergent.

258/Math.