U.G. 2nd Semester Examination - 2021

MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-04

(Differental Equations & Vector Calculus)

Full Marks: 30

Time : $1\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) Solve: $\frac{dy}{dx} = \frac{3x 4y 2}{6x 8y 5}$
- b) Find the unit vector which is perpendicular to the vectors $3\vec{i} 2\vec{j} + \vec{k}$ and $2\vec{i} \vec{j} 3\vec{k}$.
- c) Verify whether $\frac{1}{(x+y+1)^4}$ is an integrating factor of $(2xy y^2 y)dx + (2xy x^2 x)dy = 0$
- d) Solve the equation $x^2p^2 - 2xyp + y^2 = x^2y^2 + x^4.$
- e) Reduce the equation $x^2p^2 + py(2x + y) + y^2 = 0$ to Clairaut's form.

[Turn Over]

- f) Find the directional derivative of $\varphi(x, y, z) = 2yz + x^2$ at the point (1,1,2) in the direction of the vector $\vec{i} + \vec{j} + 2\vec{k}$.
- g) Integrate $a \times \frac{d^2\vec{r}}{dt^2} = b$, where a and b are constant vectors.
- h) Give geometrical interpretation of $\frac{d\vec{r}}{dt}$.

2. Answer any **two** questions:

 $5 \times 2 = 10$

- a) If $\vec{\alpha} = t^2 \vec{i} t \vec{j} + (2t 1) \vec{k}$ and $\vec{\beta} = (2t 3) \vec{i} \vec{j} t \vec{k}$, find $\frac{d}{dt} \left(\vec{\alpha} \times \frac{d\vec{\beta}}{dt} \right)$ at t = 2.
- Find the general solution of $(2x+1)(x+1)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} 2y = (2x+1)^2.$
- c) Solve:

$$(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x) \frac{dy}{dx} + 8y = 8(5+2x)^2.$$

- d) Solve: $\sin x \frac{d^2y}{dx^2} \cos x \frac{dy}{dx} + 2y \sin x = 0$.
- e) A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t is the time. Find the components of its velocity and acceleration at t=1 in the direction of $\vec{i} + \vec{j} + 3\vec{k}$.

3. Answer any **one** question: $10 \times 1 = 10$

- a) i) Solve: $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$.
 - ii) Find the unit tangent vector at any point on the curve $x = a \cos t$, $y = a \sin t$, z = bt. 5+5
- b) i) Verify whether the equation

$$(2x^2 + 3x)\frac{d^2y}{dx^2} + (6x + 3)\frac{dy}{dx} + 2y = (x + 1)e^x$$

is exact and then solve it.

- ii) Given $\vec{F} = (3x 2y)\vec{i} + (y + 2z)\vec{j} + x\vec{k},$ evaluate $\int_C \vec{F} \cdot d\vec{r}$ from (0,0,1) to (1,1,1) considering the curves C1: x = t, $y = t^2$, $z = t^3$ and C2: $x = z^2$, $z = y^2$.
- c) i) Solve the system: $(D^2 2)x 3y = e^{2t}$, $(D^2 + 2)y + x = 0$.
 - ii) Given that $\vec{r}(t) = 2\vec{i} \vec{j} + 2\vec{k}$, when t=2 and $\vec{r}(t) = 4\vec{i} 2\vec{j} + 3\vec{k}$, when t=3. Show that $\int_2^3 (\vec{r} \cdot \frac{d\vec{r}}{dt}) dt = 10$.
