U.G. 2nd Semester Examination - 2021 PHYSICS [HONOURS]

Course Code: PHY-H-CC-T-04

Full Marks: 20 Time: 1 Hour

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

- 1. Answer any **five** questions: $1 \times 5 = 5$
 - a) State the conditions to be fulfilled for the production of sustained interference fringes.
 - b) What are the factors on which the amplitude of light waves from a half-period zone at the point of observation depend?
 - c) What is meant by Rayleigh Criterion of resolution?
 - d) Write down the difference between progressive and stationary waves.
 - e) Why is the base angle of biprism of Fresnel biprism experiment made very small?
 - f) What is ideal string?

- g) Explain the rectilinear propagation of light on the basis of wave theory.
- h) Sound emitted from struck string will be richer in harmonics than that of plucked string. Explain.

GROUP-B

2. Answer any **one** question:

 $5 \times 1 = 5$

- a) i) Obtain the intensity expression for Fraunhofer pattern of a double slit.
 - ii) Distinguish between the resolving power and dispersive power of a grating. 3+2
- b) i) Show that the beat frequency is equal to the difference in frequencies of the component oscillations.
 - ii) Neglecting the effect of surface and finite depth, the wave velocity of water waves of wavelength (λ) is given by

$$C_{p} = \sqrt{\frac{g\lambda}{2\pi}}$$

Prove that the group velocity is half the wave velocity. 3+2

- c) i) Under what conditons circular and straight fringes are produced by Michelson's interferometer.
 - ii) Explain the colour phenomenon exhibited by thin flims. 2+3

GROUP-C

- 3. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Show that the group velocity c_g and phase velocity C are related as

$$c_{g} = c - \lambda \frac{dc}{d\lambda}$$

where λ is the mean wavelength.

ii) For a stretched string of length l the displacement is given by

$$y(x,t) = \sum_{n=1}^{\infty} c_n \sin \frac{n\pi x}{l} \cos (\omega_n t - \phi_n)$$

where the symbols have their usual significance. Show that the total energy of the string is

$$E = \frac{M}{4} \sum_{n} \omega_{n}^{2} c_{n}^{2}$$

where M is the mass of the string.

$$2+(4+4)$$

202/Phs. (3) [*Turn over*]

b) i) Show that the velocity of transverse waves along a stretched string is given by

$$c = \sqrt{\frac{T}{m}}$$

where T is the tension and m is the mass per unit length of the string.

- be demonstrated experimentally? Explain how the pattern changes with time when frequencies of the component oscillations differ slightly. 4+(1+2+3)
- c) i) Show that in Young's experiment that in two dimensions the shape of the fringes is hyperbolic. Why these fringes are called non-localized?
 - radii of the circular zones as the same as the radii of dark Newton's ring formed between a plane surface and plano-convex lens having radius of curvature 2m. Find the principal focal length of the zone plate.

iii) Fraunhofer diffraction pattern is observed by a double slit having slit width a=0.16mm and separation between the slits b=0.8mm. Find the missing orders.

(3+1)+3+3
