2021

COMPUTER APPLICATION [MAJOR]

Paper: I

Full Marks: 100 Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

SECTION-A

1. Answer any **five** questions:

 $1 \times 5 = 5$

- a) Differentiate between 1's complement and 2's complement.
- b) Represent (8620)₁₀ in Hexadecimal.
- c) What is the function of a decoder?
- d) Write down the names of two useful functions in C.
- e) Define algorithm.
- f) What is "function call" in C?
- g) What is Half adder?
- h) What is toggle?

SECTION-B

2. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Outline the utility of getc() and putc() functions.
- Differentiate between Half adder and a Full adder.
- c) Explain the degree of a vertex with an example.
- d) Realize following Boolean function using NAND-NAND representation:

$$Y = ab + \overline{ac} + (b+c)$$

- e) Draw an inverter using an Exclusive OR gate (two inputs).
- f) Convert the following decimal number to their respective target base:

i)
$$(1525)_{10} = (?)_2$$

ii)
$$(2586)_{10} = (?)_{8}$$

- g) Differentiate between combinational circuit and sequential circuit.
- h) Discuss type casting in C with example.
- i) State the difference between flowchart and algorithm.

- j) Prove that the probability of the complementary event \overline{E} of E is given by $P(\overline{E})=1-P(E)$.
- k) Obtain Gray Code for the input '1010110010'.
- 1) Define a complete graph.

SECTION-C

- 3. Answer any **five** questions: $6 \times 5 = 30$
 - a) Write a C program to add the upper diagonal elements of a 4×4 matrix.
 - b) Discuss different Loop structure in C.
 - c) Explain the operation of a JK flip-flop with the help of a suitable diagram.
 - d) Simplify the following expression using kmap:

$$F(X_1, X_2, X_3, X_4) =$$

$$\sum m(0, 1, 2, 5, 9, 10, 14)$$

- e) Draw a 4-bit Two's complement adder and explain its function.
- f) Realise following truth table using a multiplexer:

[3]

A	В	C	Y
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

g) Construct a 8×1 Multiplexer and describe its operation.

SECTION-D

- 4. Answer any **three** questions: $15 \times 3 = 45$
 - a) Prepare a flowchart to varify whether a given number is prime or net and write the corresponding program in BASIC/C. How much static memory is required by the variables in your program? 5+8+2=15
 - b) i) Write a C program to create a copy of a text file "file 1. text" into another "file 2. text".

14(M)

- ii) What is the difference between opening a file in 'rt' and 'wt' modes?
- iii) Write a BASIC program to find the number of vowels and consonants in online text. 8+3+4=15
- c) i) Write a BASIC program to generate the following series:

$$1 \times 2^2 + 3 \times 4^2 + 5 \times 6^2 + ... + n \times m^2$$

- ii) Write a BASIC program which will take temperature in Celsius Scale as input and give its Farenheit equivalent and vice-versa. 7+8=15
- d) Write short notes on the following:

$$5 \times 3 = 15$$

- i) Pointers
- ii) Structure and union in C language
- iii) Enumerated data types
- e) i) Why registers are used in a digital system?
 - ii) Describe the major four types of shift registers with block diagrams.
 - iii) What is a universal shift register?

$$1+12+2=15$$

f) i) Design a full adder circuit and implement it using NAND gates only.

- ii) Design a counter to go through states 0, 1, 2, 3, 4, 5, 6, 0
- iii) Simplify using Boolean Algebra.

$$\overline{ABC} + \overline{ABC} + \overline{ABC}$$
 6+6+3=15
