2021

COMPUTER SCIENCE

[HONOURS]

Paper: IV

Full Marks: 50 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

- 1. Answer any **two** questions from the following: $1 \times 2 = 2$
 - a) What is fetch cycle?
 - b) Define stack pointer.
 - c) What do you mean by USB?
 - d) How many T-state the CALL instruction will require?

GROUP-B

2. Answer any **five** questions:

 $2 \times 5 = 10$

a) What is bus arbitration?

[Turn over]

- b) Write the usefulness of SIM instruction.
- c) Give example of (i) Software interrupt and(ii) Non maskable interrupt of 8085.
- d) Write two differences between RAM and ROM.
- e) What are the duties of instruction register and program counter?
- f) What is three address instruction? Give example.
- g) State the advantages of Auto indexing.

GROUP-C

Answer any three questions from the following:

 $6 \times 3 = 18$

- 3. a) Why memory segmentation is useful?
 - b) Explain memory segmentation of 8086.

2+4=6

- 4. a) Represent the decimal value -0.75 in IEEE-754 single precision format.
 - b) What do you mean by tri-state device?

4+2=6

Convert the following in Zero-address, Oneaddress and three instruction format:

17(Sc)

$$Y = (A - B)/(C + D^*E).$$
 2+2+2=6

- 6. a) Explain the differences between RAR and RLC instruction with example.
 - b) Explain demultiplexing of address and data bus in 8085. 3+3=6
- 7. a) Why interrupt is useful?
 - b) Explain in detail how 8085 handles interrupt call. 2+4=6

GROUP-D

Answer any two questions:

 $10 \times 2 = 20$

- 8. a) Draw the timing diagram of INR M.
 - b) Describe various addressing modes available in 8085 with example. 5+5=10
- 9. a) Define stack and stack pointer as applied to a microprocessor. What do you understand by the PUSH and POP instructions?
 - b) The following transfer statements specify a memory operation. Explain the memory operations in each case.
 - i) $R2 \leftarrow M[AR]$
 - ii) $M[AR] \leftarrow R3$
 - iii) $R5 \leftarrow M[R5]$ 6+(2+2)

- 10. a) Discuss the drawbacks of various cache writing policies.
 - b) A computer have memory size of 16K where each word is of 16 bit. The instruction stored in one location (word). Each instruction have two parts:

opcode field, and operand field.

- i) How many bit in each field?
- ii) Draw the instruction format and indicate the No. of bits.
- iii) Specify the No. of operation in this computer. $(2\times3)+4$
- 11. Write short notes on any **two** of the following: $5 \times 2 = 10$
 - a) Keyboard interfacing
 - b) Harvard architecture
 - c) Flag registers of 8086
 - d) Associative memory
