UG-II/Math(H)/III/21

2021

MATHEMATICS

[HONOURS]

Paper: III

Full Marks: 100

13(Sc)

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Notations and symbols have their usual meanings.

- 1. Answer any **three** from **(a)** to **(e)** and any **two** from the rest: $1 \times 5 = 5$
 - a) Let $f(x) = \sqrt{x}$, $x \in [0, 2]$. Show that f is uniformly continuous but not Lipschitz continuous.
 - b) Give an example of a commutative ring without multiplicative identity.
 - c) Give an example of normal subgroup of S_3 .
 - d) Show that the system of three vectors (1, 3, 2), (1, -7, -8), (2, 1, -1) of $V_3(R)$ is linearly dependent.

- e) Give an example to show that arbitrary union of compact sets may not be compact.
- f) If A is open and B is closed subset of R then show that A-B is open.
- g) Give an example of a function which is continuous everywhere but is not differentiable at two points.
- h) State monotone convergence theorem for sequence of real numbers.
- 2. Answer any **five** from **(a)** to **(f)** and any **five** from the rest: $2 \times 10 = 20$
 - isomorphic then show that $\frac{G}{2G} \cong \frac{H}{2H}$.
 - b) Prove that if $d = \gcd(a, b)$, then $\frac{a}{d}$ and $\frac{b}{d}$ are integers prime to each other.
 - c) Let G be a group and let $a \in G$. Prove that $C(a) = C(a^{-1})$ where C(a) denotes the centraliser of a.
 - d) Prove that a field does not contain any divisor of zero.

e) If n be a positive integer, prove that

$$\frac{1.3.7...(2^{n}-1)}{2.4.8...2^{n}} < \frac{2^{n}}{2^{n+1}-1}.$$

f) Let $T: \mathbb{R}^3 \to \mathbb{R}$ be defined by

$$T(x, y, z) = x(x+y+z).$$

Is T linear? Justify.

- g) Show that the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ is convergent.
- h) Prove that $[0, 1] = \bigcap_{n=1}^{\infty} \left(0, 1 + \frac{1}{n}\right)$.
- i) Prove that any non-empty open set of \mathbb{R} is uncountable.
- j) Let $f:(0,1) \to \mathbb{R}$ be defined by $f(x) = x \sin \frac{1}{x}$. Show that f is uniformly continuous.
- k) Show that $\{\cos n : n \in \mathbb{N}\}\$ is dense in [-1, 1].
- 1) If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, then show that inf S=0.

- 3. Answer any **three** from **(a)** to **(e)** and any **two** from the rest: $6 \times 5 = 30$
 - a) If $a_n = \sin \frac{n\pi}{2} + \frac{(-1)^n}{n}$, $n \in \mathbb{N}$, then show that $\lim_{n \to \infty} a_n = -1 \text{ and } \overline{\lim}_{n \to \infty} a_n = 1.$
 - b) i) Prove that the number of primes is infinite.
 - ii) Prove that every finite integral domain is a field. 3+3
 - c) i) Find out the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ where

$$T(x, y, z) = (x + 2y, x + y + z, 2x + y)$$

with respect to the standard ordered basis.

- ii) Show that $\mathbb{Z}_4 \not\equiv K_4$ (K_4 denotes Klein 4-group).
- d) Show that a non-zero finite ring having no divisor of zero is a ring with unity.
 6
- e) i) Show that between any two real numbers a and b $(a \neq b)$ there exists a rational number.

ii) Let S be a non-empty subset of R which is bounded below. Verify whether

$$\inf S = -\sup \{-s : s \in S\}.$$
 3+3

- f) i) Show that the set of irrationals is neither open nor closed.
 - ii) Prove that if $f: \mathbb{R} \to \mathbb{R}$ has the intermediate value property and $f^{-1}(\{q\})$ is closed for every rational q, then f is continuous. 3+3
- g) i) If $x_n = \sqrt{n}$, show that $(x_n)_{n=1}^{\infty}$ satisfies $\lim_{n\to\infty} \left|x_{n+1} x_n\right| = 0 \quad \text{but} \quad (x_n)_{n=1}^{\infty} \quad \text{is not a}$ Cauchy sequence.
 - ii) State Lagrange's MVT and give its geometric interpretation. 3+3
- h) i) If $f, g: \mathbb{R} \to \mathbb{R}$ are continuous, then show that $\{x \in \mathbb{R}: f(x) \neq g(x)\}$ is an open set.
 - ii) Give an example of a divergent sequence which has exactly one cluster point. 3+3

- 4. Answer any **three** questions: $15 \times 3 = 45$
 - a) i) Let $S = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} : a, b \in \mathbb{R} \right\}$. Show that S is left but not right ideal of $M_2(\mathbb{R})$.
 - ii) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x y, x + 2y, y + 3z), $(x, y, z) \in \mathbb{R}^3.$ Show that T is invertible and determine T^{-1} .
 - iii) Verify that $\frac{x}{n(1+nx^2)}$ has a maximum at $x = \frac{1}{\sqrt{n}}$. Hence test for convergence of the series $\sum_{n=1}^{\infty} \frac{x}{(1+nx^2)}$ in $0 < x < \infty$.
 - b) i) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.
 - ii) State Cauchy's General Principle for the existence of a finite limit of a

real valued function f(x) as $x \rightarrow a$, a being a finite real number. Use this principle to examine whether

$$\lim_{x \to 0} \left(\sin \frac{1}{x} + x \sin \frac{1}{x} \right) \text{ exists or not.}$$

iii) Examine if the ring of matrices

$$\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

contains divisor of zero. 5+6+4

c) i) Show that the following matrix is diagonalisable and find the diagonalised matrix:

$$\begin{pmatrix}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{pmatrix}$$

- ii) If H is a normal subgroup of a group G then show that the binary operation on $\frac{G}{H}$ given by aH.bH = abH is well-defined.
- iii) If f and g are two continuous functions from \mathbb{R} to \mathbb{R} such that f(x) < g(x)

for all $x \in Q$ then show that $f(x) \le g(x)$ for all $x \in \mathbb{R}$. 5+5+5

d) i) If x, y, z are positive real numbers and x+y+z=1, prove that

$$8xyz \le (1-x)(1-y)(1-z) \le \frac{8}{27}$$

- ii) State and prove Fermat's Little Theorem.
- iii) State and prove sequential criterion for continuity. 5+5+5
- e) i) Show that $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if for every open set U of \mathbb{R} , $f^{-1}(U)$ is open.
 - ii) Define absolute convergence of a series. Prove that every absolutely convergent series is convergent. Give an example of a convergent series which is not absolutely convergent.
 - iii) Prove that every group is isomorphic to a group of permutations. 5+5+5

[8]

13(Sc)