2021 STATISTICS [HONOURS] Paper : V

Full Marks : 75Time : 4 Hours

The figures in the right-hand margin indicate marks. Candidates are required to give their answers in their own words as far as practicable. Notations and symbols have their usual meaning. Answer all the questions.

- 1. Answer any **five** questions: $1 \times 5=5$
 - i) Define *t* distribution with 2 degrees of freedom.
 - ii) Define asymptotic efficiency of an estimator*T* based on a sample of *n* observations.
 - iii) If the distribution of Y is F with (n_1, n_2) d.f., what is the distribution of $\frac{1}{Y}$?
 - iv) Write down an unbiased estimator of σ^2 when $X_1, X_2, ..., X_n$ are iid observations from a $N(\mu, \sigma^2)$ population where both parameters are unknown. [Turn over]

- v) What is p-value of a test?
- vi) What is MVUE in the context of estimation theory?
- vii) If U and V are two statistics with $E(U) = 3\theta$ and $E(V) = 2\theta$, obtain an unbiased estimator of θ .
- viii) What is composite hypothesis? Give an example.
- ix) Describe randomized test.
- 2. Answer any six questions: $2 \times 6 = 12$
 - i) Let X be an observation from $f_{\theta}(x) = \theta e^{-\theta x}, \ 0 < x < \infty, \theta > 0$. If (X, 2X) is a confidence interval for $1/\theta$, find its confidence coefficient.
 - ii) Suppose $X_1 \sim Bin(n_1, p)$, $X_2 \sim Bin(n_2, p)$ and X_1, X_2 are independent. Find the conditional distribution of X_1 given $X_1 + X_2$.
 - iii) If (X_1, X_2) be a random sample of size 2 from a P(λ) population, check from the definition whether T = X₁ + X₂ is sufficient for λ .
 - iv) Define an unbiased estimator. Is it unique? Justify.

[2]

31(Sc)

31(Sc)

- v) Define an UMP test. Does it always exist?Give example to justify your answer.
- vi) Write Polar transformation for n real valued random variables.
- vii) Let $X_1, X_2 \sim \text{iid Bernoulli}(\theta)$. Check whether the statistic $T = X_1 + 2X_2$ is sufficient for θ .
- viii) State Rao-Cramer inequality.
- ix) For two size α test procedures, which one will you prefer? Define that criterion which you will use to prefer one.
- x) Show that if X and Y follow independent Chisquare distributions with m and n degrees of freedom respectively then the distribution of X + Y is Chi-square with m + n degrees of freedom.
- 3. Answer any **three** questions: $6 \times 3 = 18$
 - i) Let $X_i \sim N(\mu, \sigma^2)$ independently for i = 1, 2, ...,n. Find the sampling distribution of

$$\sum_{i=1}^{n} (x_i - \overline{x})^2 \text{ where } \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

ii) The random variables X_i (i=1, 2, ...n) are independently distributed, respectively, as $N(0,\sigma_i^2)$.

[3]

Let
$$\tilde{X} = \sum_{i=1}^{n} \frac{X_i}{\sigma_i^2} / \sum_{i=1}^{n} \frac{1}{\sigma_i^2}$$

Show that $\sum_{i=1}^{n} \frac{1}{\sigma_i^2} (X_i - \tilde{X})^2$ is distributed as

Chi-square with (n-1) d.f.

- iii) a) Show that the Neyman-Pearson test is a function of a sufficient statistic.
 - b) If $X_1,...,X_n$ be iid Cauchy(θ), show that

the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is not

consistent for θ . Suggest a consistent estimator in this case.

- iv) a) Define a consistent estimator and state a set of sufficient conditions for consistency.
 - b) For two inconsistent estimators of θ , which evaluation criterion is used to prefer any one of them? Define that criterion. 3+3
- iv) Let X_1, X_2 and X_3 be a random sample of size three from a uniform ($\theta, 2\theta$) distribution., where $\theta > 0$. Find MME and MLE of θ . Which will you prefer and why?

[4]

31(Sc)

- 4. Answer any **four** questions: $10 \times 4 = 40$
 - i) a) Define MSE in connection to the theory of estimation.
 - b) Let the random variable $Y_1, Y_2, ..., Y_n$ satisfy $Y_i = \beta x_i + e_i$, i = 1, 2, ...n, where $x_1, x_2, ..., x_n$ are fixed constants, and e_1 , $e_2, ..., e_n$ are iid $N(0, \sigma^2), \sigma^2$ is unknown. Find the distribution of Y_i and $\overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$. Using the result also construct an unbiased estimator of β .
 - c) On the basis of a random sample of size n drawn from the distribution with p.d.f.

$$f_{\theta}\!\left(x\right) \!=\! \frac{1}{2\theta} e^{-|x|/\theta}, -\infty \!< x < \!\infty, \theta \!>\! 0,$$

Derive a method of moments estimator for θ . 4+2+4

- ii) Obtain the distribution of the sample range based on a sample of size n drawn from a $U(-\theta, \theta)$ distribution.
- iii) a) Let X be an observation from the distribution with p.d.f.

$$f(x \mid \theta) = \left(\frac{\theta}{2}\right)^{|x|} (1 - \theta)^{1 - |x|};$$
$$x = -1, 0, 1; \quad 0 \le \theta \le 1$$

Find the MLE of θ . Also show that the

estimator
$$T(X) = \begin{cases} 2 & \text{if } x = 1 \\ 0, & \text{otherwise} \end{cases}$$

is an unbiased estimator of θ .

- b) Define uniformly minimum variance unbiased estimator of a function $\gamma(\theta)$. Show that such an estimator, if exists, is unique. 5+5
- iv) a) Suppose $(X_1, X_2, ..., X_m)$ and $(X_1, X_2, ..., X_m)$
 - $(Y_1, Y_2, ..., Y_n)$ are two iid random samples from $N(\mu_x, \sigma_x^2)$ and $N(\mu_y, \sigma_y^2)$ distributions respectively, where σ_x and σ_y are known. Find a $100(1-\alpha)\%$ confidence interval for the difference between μ_x and μ_y .
 - b) Suppose X is an observable random variable with its pdf given by f(x), x∈R.
 Consider two functions defined as follows:

31(Sc)

31(Sc)

$$f_{0}(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^{2}}{2}\right], \quad f_{1}(x) = \frac{1}{\pi} \frac{1}{1+x^{2}},$$

Derive MP level α test for
 $H_{0}: f(x) = f_{0}(x)$ against $H_{1}: f(x) = f_{1}(x).$
Also compute power of the test. 4+6

- v) a) Let X_1, X_2, \dots, X_n be iid Exponential (γ). Find an unbiased estimator of γ based only on Y= min(X_1, X_2, \dots, X_n)
 - b) State Rao-Blackwell theorem. On the basis of a sample of size n from Bernoulli(θ), find the MVUE of θ². Show every step required. 5+(1+4)
- vi) a) Let $X_1, X_2, ..., X_n$ be a random sample from a univariate normal distribution with mean θ and variance σ^2 , where both are unknown. Find a likelihood ratio test for $H_0: \theta = \theta_0$ against $H_1: \theta > \theta_0$.
 - b) Define Likelihood Ratio Test (LRT) statistic and show that it lies in (0,1).

6+4