261/Math.

UG/2nd Sem/MATH-G-CC-T-02/21

U.G. 2nd Semester Examination - 2021

MATHEMATICS

[PROGRAMME]

Course Code: MATH-G-CC-T-02

(Differential Equations)

Full Marks: 30

Time : $1\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) Find the integrating factor of $x \log x \frac{dy}{dx} + y = 2 \log x$
- b) Find the particular solution of the differential equation $y'' + 2y' + y = 3 2\sin x$.
- c) Solve: $9yp^2 + 4 = 0$ and examine for singular solutions, where $p \equiv \frac{dy}{dx}$.
- d) Find the differential equation of the circles touching the y-axis at the origin.
- e) Find the particular solution of $\cos y \, dx + (1 + 2e^{-x})\sin y = 0$ when $x = 0, y = \frac{\pi}{4}$.

[Turn Over]

- f) Eliminate the arbitrary function and form the the PDE from $z = xy + f(x^2 + y^2)$.
- g) Solve: $p \tan x + q \tan y = \tan z$.
- h) Find the characteristics of $\chi^2 r + 2\chi ys + \gamma^2 t = 0$.
- 2. Answer any **two** questions:

 $5 \times 2 = 10$

- a) Solve by the method of variation of parameters: $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \frac{e^{-x}}{x^2}.$
- b) Find the solution of the initial value problem $x^2y'' xy' 3y = 0$, y(1) = 1, y'(1) = -2.
- c) Solve the following equation by Charpit's method: $\sqrt{p} + \sqrt{q} = 1$.
- d) If $y = y_1(x)$ be a solution of $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$, then prove that the general solution of $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = R(x)$, Where P(x), Q(x), R(x) are continuous functions of x, can be determined in the form $y = v(x)y_1(x)$.
- e) Find a complete integral of zpq = p + q.

3. Answer any **one** question:
$$10 \times 1 = 10$$

a) i) Solve:
$$\frac{dx}{dt} + 5x + y = e^t, \quad \frac{dy}{dt} - x + 3y = e^{2t}$$

ii) Solve by Lagrange's method,

$$x^{2}(y-z)\frac{\partial z}{\partial x} + y^{2}(z-x)\frac{\partial z}{\partial y} = z^{2}(x-y).$$

b) i) Solve:

$$x^{3} \frac{d^{3}y}{dx^{3}} + 3x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + 8y = 65 \cos(\log x).$$
5

ii) Solve:

$$z(x + y) \frac{\partial z}{\partial x} + z(x - y) \frac{\partial z}{\partial y} = x^2 + y^2.$$
 5

c) i) Solve:
$$\frac{dx}{y^2+yz+z^2} = \frac{dy}{z^2+zx+x^2} = \frac{dz}{x^2+xy+y^2}.$$
 5

ii) Reduce the differential equations $y = 2px - p^2y$, $p = \frac{dy}{dx}$ to Clairaut's form by the substitution $y^2 = Y$, x = X and then obtain the complete primitive and singular solution, if any.
