U.G. 2nd Semester Examination - 2021

PHYSICS

[HONOURS]

Course Code: PHS-H-CC-P-03 [PRACTICAL]

Time: 2 Hours Full Marks: 20

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any **four** questions:

 $5 \times 4 = 20$

- State and prove reciprocity theorem.
 - b) State and prove Norton's theorem.
- 2. Mention the condition of maximum power a) transfer as per maximum power transfer theorem. Can it be a 100% transfer?
 - State and prove superposition theorem. $2\frac{1}{2}$
- Discuss the A.C response of a pure capacitor 3. and show in phasor diagram that emf and current are in quadrature.
 - Show the phasor diagram of an imperfect capacitor under application of A.C.
 - Establish that the voltages across C, R are related to the emf e according to Pythagorus

theorem : $e_0^2 = V_{R0}^2 + V_{C0}^2$ where '0' indicates the peak value.

- Consider a solenoid of length L and radius a and n number of turns per unit length. A current i flows through it. Find the self inductance of the solenoid if
 - L is small / finite.

L is very large.

- Describe with a suitable theory how the self inductance of a coil can be determined with the help of Anderson bridge. 5
- Consider a series LCR circuit to which an 6. alternating voltage $e = e_0$ sin wt is applied. Establish the following:
 - Current resonance occurs at angular frequency $w = \frac{1}{\sqrt{LC}}$ 1
 - Voltage resonance occurs at angular

frequency
$$w = \frac{1}{\sqrt{\frac{I}{LC} - \frac{R^2}{2L^2}}}$$

- Show the current response in a series LCR circuit in the following cases through a diagram (take angular frequency as abscissa):
 - High Q circuit

1

Low O circuit.

- 7. a) Consider a parallel LCR circuit to which an alternating voltage $e = e_0 \sin wt$ is applied. Show the following in neat diagram:
 - i) Phasor diagram at parallel resonance in low Q circuit.
 - ii) Phasor diagram at parallel resonance in high Q circuit.1
 - b) LCR parallel circuit is called rejector circuit.

 Justify the name showing its current response.

2

c) Mention one application of rejector circuit.

1

- 8. a) What is the difference between an ordinary galvanometer and a ballistic galvanometer?

 Justify the name ballistic. $1\frac{1}{2}$
 - b) Discuss what you mean by damping correction of a ballistic galvanometer. How can you measure the log decrement?
 - Method of leakage of the charge of a capacitor is not suitable for measuring low resistance. Explain. $1\frac{1}{2}$
