a) State Week love of large numbers

Answer any **eleven** questions:

$2 \times 11 = 22$

2021

STATISTICS

[GENERAL]

Paper: II

Full Marks: 100 Time: 3 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions.

- 1. Answer any six questions: $1 \times 6 = 6$
 - a) Write the fixed effects model for ANOVA oneway classified data.
 - b) Define power in the context of testing of hypothesis.
 - c) What is marginal distribution?
 - d) Write down one layout of 4×4 LSD.
 - e) Define a unbiased estimator.
 - f) Write down the pdf of a F-distribution with n₁ and n₂ degrees of freedom.
 - g) What is null hypothesis?
 - h) What is non sampling error in sample survey?

- a) State 'Weak law of large numbers'.
- b) Obtain the total number of possible samples of size n drawn with replacement from a finite population of size N.
- what are confidence limit and confidence coefficient? Explain clearly.
- d) Write down the properties of a t-distribution.
- e) What do you mean by MVUE?
- f) Write down the expression for the standard error of sample mean in SRSWOR from a finite population.
- g) What are the different models in ANOVA?
- h) Give an example, where maximum likelihood estimator is biased.
- Write down the model suitable for analysis of data obtained from an RBD with proper assumption.
- j) If \bar{X} is an u. e. of a population mean μ , show that \bar{X}^2 is, in general biased for μ^2 .
- k) Distinguish between a null hypothesis and an alternative hypothesis with examples.
- 1) Explain what do you mean by local control in connection with design of experiments.

- m) State Chebyshev's inequality.
- If x_1 , x_2 , x_3 , x_4 are independently distributed N(0, 1) variables, what will be the distribution of $(x_1^2 + x_3^2)/(x_2^2 + x_4^2)$?
- 3. Answer any **seven** questions: $6 \times 7 = 42$
 - a) In connection with sample survey, explain the terms population, sample, sampling unit and sampling frame.
 - b) Describe the model, the assumptions and the hypothesis for analysing two way classified data with one observations per cell under fixed effects model.
 - c) Derive the maximum likelihood estimate of the parameters α of a population having density function

$$f(x) = \begin{cases} \frac{2}{\alpha^2} (\infty - x), & 0 < x < \infty \\ 0, & \text{otherwise} \end{cases}$$

for a sample of unit size.

d) Let x be a r.v. with pdf

$$f(x) = \begin{cases} 1, & \theta - \frac{1}{2} < x < \theta + \frac{1}{2} \\ 0, & O.W. \end{cases}$$

To test $H_0: \theta = 2$ against $H_0: \theta = 4$, suppose we reject H_0 if x > 3. Find P(Type I error) and P(Type II error) of the test.

e) The joint probability density function of r.v. X and Y is given by

$$f(x,y) = \begin{cases} \frac{6}{7} \left(x^2 + \frac{xy}{2}\right), & 0 < x < 1, \quad 0 < y < 2 \\ 0, & \text{otherwise} \end{cases}$$

- verify that this is indeed a joint density function.
- II) Compute the marginal function of x.
- III) Find E(X).
- f) If x_1, x_2 , are independently distribute random variables with N(0,1) derive the distribution of x_1+x_2 .
- g) Discuss a suitable test for testing $H_0: \mu_1 = \mu_2$ against all alternatives for two independent normal populations $N(\mu_1, 1)$ and $N(\mu_2, 2)$.

- h) Let $x_1, x_2, ..., x_n$ are n random sample observations from $N(\mu, a^2)$. Obtain $100(1-\infty)\%$ confidence limits to a^2 , when μ is known.
- i) What are the basic principles of design of experiment? Explain them clearly.
- 4. Answer any **three** questions: $10 \times 3 = 30$
 - a) For a normal distribution $N(\mu, \sigma^2)$, both μ and σ being unknown, discuss testing procedures for
 - i) $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ and
 - ii) $H_0: \sigma = \sigma_0 \text{ against } H_1: \sigma < \sigma_0$

Also derive a 95% confidence interval for μ .

3+3+4

- b) i) Write down the role of randomization, replication and local control in design of experiments.
 - ii) Derive the variance of sample mean in case of SRSWOR from a finite population. 5+5
- c) Write notes on: 5+5
 - i) Method of moments
 - ii) Properties of ML estimator.

- d) Obtain the mean and variance of chi-square distribution with m degrees of freedom. 5+5
- e) If $x_1, x_2, ..., x_n$ are n random sample obseravtions from $N(\mu, a^2)$. Examine the unbiasedness of the sample mean as an estimator of μ . Derive the MLE of μ and a^2 .
