U.G. 5th Semester Examination - 2021 MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-12

Course Title: Group Theory - II

Full Marks : 60 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks. The notations and symbols have their usual meanings.

GROUP-A

(Marks: 20)

1. Answer any **ten** questions from the following:

 $2 \times 10 = 20$

- a) Define group action on a set.
- b) Find the class equation of the symmetric group S_3 .
- c) Let G be a group and $a \in G$. Prove that $a \in Z(G)$ if and only if $Cl(a) = \{a\}$, where Z(G) is the center of G and Cl(a) is the conjugacy class of a.

- d) Show that any group of order 14 contains a normal subgroup of order 7.
- Find the number of distinct conjugacy classes in S_4 .
- f) Show that any group of order 15 is commutative.
- g) Let G be a group. Show that Inn(G) is a normal subgroup of Aut(G).
- h) Show that a group of prime order is a simple group.
- i) Find $Aut(\mathbb{Z})$.
- j) Define the commutator subgroup or derived subgroup of a group.
- k) Is external direct product of two cyclic groups always cyclic? Justify.
- 1) Prove that \mathbb{Z} under addition is not isomorphic to \mathbb{Q} under addition.
- m) State the Sylow's third theorem.
- n) What is the order of the factor group $\frac{\mathbb{Z}_{60}}{\langle 15 \rangle}$?
- o) Define internal direct product of two subgroups H_1 and H_2 of a group G.

GROUP-B

(Marks: 20)

2. Answer any **four** questions: $5 \times 4 = 20$

- a) State and prove the fundamental theorem of Abelian group.5
- b) Show that any group of order 11² .13² is Abelian.
- c) In $\mathbb{Z}_{40} \oplus \mathbb{Z}_{30}$, find two subgroups of order 12.
- d) Show that any group of prime power order always have a non-trivial center. 5

5

- e) Find two groups G and H such that G and H are not isomorphic but Aut(G) is isomorphic to Aut(H). Show that U(8) is not isomorphic to U(10).
- f) Find $Inn(D_4)$, where $Inn(D_4)$ denotes the group of inner automorphisms of D_4 .

GROUP-C

(Marks: 20)

- 3. Answer any **two** questions: $10 \times 2 = 20$
 - a) i) Let G be a group and H be a normal subgroup of G. Show that the function $G \times H \mapsto H$ defined by $(g,h) \mapsto ghg^{-1}$ is a group action.

- ii) Let G be a cyclic group of order mn, where m, n are positive integers such that gcd(m, n) = 1. Show that $G \cong Z_m \times Z_n$.
- iii) Find all the Sylow 3-subgroups of S_4 . 4
- b) i) State Cauchy's theorem. 2
 - ii) Show that any group of order p^2 is commutative, where p is a prime. 3
 - iii) Let G be an Abelian group of order n and m be a positive divisor of n, then show that G has a subgroup of order m.5
- c) i) Define simple group.
 - Let p and q be two prime numbers. Then show that no group of order pq is simple.
 - iii) Prove that any group of order 30 is not simple.

5
