592/1 Math. UG/5th Sem/MATH-H-DSE-T-01A/21 U.G. 5th Semester Examination - 2021 MATHEMATICS [HONOURS] Discipline Specific Elective (DSE) Course Code : MATH-H-DSE-T-01A (Linear Programming) Full Marks : 60 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks. The notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $2 \times 10 = 20$
 - i) When a game is said to be fair? Give an example.
 - ii) Express the following LPP as standard maximization problem:

Minimize $Z = 4x_1 - x_2 + 2x_3$

Subject to
$$4x_1 + x_2 - x_3 \le 7$$

 $2x_1 - 3x_2 + x_3 \le 12$
 $x_1 + x_2 + x_3 = 8$
 $4x_1 + 7x_2 - x_3 \ge 16$
 $x_1, x_2, x_3 \ge 0.$

- iii) Find the basic feasible solutions of the equation $2x_1 + 3x_2 - x_3 = 6$.
 - [Turn Over]

- iv) Show that intersection of two convex sets is also a convex set.
- v) Extreme points are finite in number. Justify.
- vi) Prove that the set defined by $X = \{x : |x| \le 2\}$ is a convex set.
- vii) Find out the extreme points (if any) of the convex set $S = \{(x, y : |x| \le 1, |y| \le 1)\}$.
- viii) Is the point (1,10) lie in the convex set of feasible solutions determined by the constraints $2x_1 + 5x_2 \le 40, x_1 + x_2 \le 11, x_2 \ge 4, x_1, x_2 \ge 0$?
- ix) State Complementary slackness theorem of Duality theory.
- x) What is the relation between the optimal values of primal and dual problems (assume that both exist)?
- xi) How can you detect that in a Transportation Problem the solution is optimal? What is the criterion for the existence of multiple optimal solutions?
- xii) What is unbalanced Transportation Problem? How can you convert it into a balanced Transportation Problem?
- xiii) Define a symmetric game. Why is it called so?

(2)

592/1 Math

- xiv) State Fundamental theorem of LPP.
- xv) Write down the dual of the following problem :

Maximize $Z = 2x_1 + 3x_2 + x_3$

subject to
$$2x_1 + x_2 - 3x_3 \le 7$$

 $2x_1 - x_2 + x_3 \le 6$
 $x_1 + 3x_2 + x_3 \le 8$
 $2x_1 + 3x_2 - x_3 \ge 12$
 $x_1, x_2, x_3 \ge 0.$

- 2. Answer any **four** questions: $5 \times 4 = 20$
 - i) Solve the following L.P.P. by graphical method:

Maximize $Z = 8000x_1 + 7000x_2$

- subject to $3x_1 + x_2 \le 66$
 - $x_1 + x_2 \le 45$ $x_1 \le 20$ $x_2 \le 40$ $x_1, x_2 \ge 0.$
- ii) Show that $x_1 = 5$, $x_2 = 0$, $x_3 = -1$ is a basic solution of the following set of equations

$$x_1 + 2x_2 + x_3 = 4$$
$$2x_1 + x_2 + 5x_3 = 3$$

Find the other basic solution, if there be any.

iii) Solve the following LPP by simplex method: Maximize $Z = 3x_1 + 2x_2$

s.t.
$$x_1 + x_2 \le 4$$

 $x_1 - x_2 \le 2$
 $x_1, x_2 \ge 0.$

iv) Solve the following balanced Transportation problem :

	D_1	D_2	D_3	D_4	a_i
	9	8	5	7	12
	4	6	8	7	14
	5	8	9	5	16
b _j	8	18	13	3	

v) Find out the optimal (maximum) assignment profit from the following cost matrix:

	Ι	II	III	IV
A	9	6	6	5
A B C D	8	7	5	6
С	8	6	5	7
D	9	9	8	8

vi) State and prove fundamental duality theorem.

- 3. Answer any **two** questions: $10 \times 2=20$
 - i) a) Solve the following L.P.P.: 6+4=10Maximize $Z = 4x_1 + 3x_2$ subject to $3x_1 + x_2 \le 15$ $3x_1 + 4x_2 \le 24$ $x_1, x_2 \ge 0.$
 - b) Show that

$$S = \{ (x_1, x_2, x_3) : 2x_1 - x_2 + x_3 \le 4, x_1 + 2x_2 - x_3 \le 1 \}$$

is a convex set.

ii) Solve the following L.P.P. by using Big-M method: 10

Maximize $Z = -2x_1 - x_2$

subject to $3x_1 + x_2 = 3$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0.$$

iii) Write down the dual of the following problem:

Minimize
$$Z = -12x_1 + 6x_2 - 4x_3$$

subject to $-3x_1 + x_2 + x_3 \ge 3$
 $4x_1 + x_2 + x_3 \le 2$
 $x_1, x_2, x_3 \ge 0.$

Solving the dual problem, discuss the nature of the primal problem. 10

592/1 Math (5) [Turn Over]

- iv) a) Prove that, in a balanced transportation problem having m origins and n destinations $(m, n \ge 2)$ the exact number of basic solutions is m+n-1.
 - b) Reduce the following game to 2×2 game and then solve it : 4+6=10

3	2	4	0
3	4	2	4
4	2	4	0
0	4	0	8

592/1 Math

(6)