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MATHEMATICS
[PROGRAMME]

Discipline Specific Elective (DSE)

Course Code : MATH-G-DSE-T-1A&B
Full Marks : 60 Time : 21 Hours
The figures in the right-hand margin indicate marks.

The notations carry their usual meanings.

Answer all the question from selected Option.

Course Code : MATH-G-DSE-T-1A
(Matrices and Linear Algebra)

1.  Answer any ten questions from the following:

2x10=20

1)  Find all non-null matrices of the form (Z (C))

whose squares are equal to the null matrix.

i1)) Find the dimension of the subspace

{(x,2x):x € R}of R?.

i) 1f= (2 513) then find (4% — 34 — 131).
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Vi)

vii)

viii)

X1)

Xii)
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If U and W are two subspaces of a vector space
V over F then check whether U V W is a

subspace or not.

Check whether {(x, x + 1):x € R} is a subspace
of R? or not.

How many solutions are there for the
simultaneous equations: +y = 1;3x + 3y = 1?7

Justify your answer.

A transformation T:R? —» R? is defined by
T(x,y) = (x,0) . Check whether it is linear or

not.

If « =(a,b),p=(+bb—a), and y = (b,a),
find suitable scalars p, ¢ such that
pa+qpf =yinR?%.

If the vectors (0,1,a),(1,a,1),(a, 1,0) of the
vector space R* be linearly dependent, then find
the value of a.

Find the eigen values of A = ((1) (1))

If 2 be an eigen value of an orthogonal matrix 4,

then show that % is also an eigen value.

If w,,w,,w;,, be three subspaces of a vector
space V over F, then find the smallest subspace

contained in each of the above subspaces.
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xiil)) Compute the inverse of the matrix:

X1V)

XV)

2. Answer any four questions:

i)

ii)

iii)
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(1 2
A= (—1 1)'
IfW = {(x,2y,32):x,y,z € R}, then show that W

is a subspace of R®.

Show that Ker ¢, where ¢:V — w, is a linear
transformation between two vector spaces V, W

over a field F, is a subspace of V.
5%4=20

Show that the vectors {(1,2,1),(2,1,0), (1,—1,2)}

form a basis of the vector space R over R .

Show that every square matrix can be expressed
uniquely as a sum of a symmetric and a skew-

symmetric matrix.
Verify Cayley Hamilton theorem for the

1 0 2
matrix:A=(0 -1 1}

0 1 0

Prove that the points (x;,y;),i=1,2,3, are

collinear, if and only if the rank of the matrix

x1 y1 1
X2 Y2 1]be less than three.
X3 y3 1

0 1 0
If A={-1 -0 2|  then evaluate
0 0 1

(A3 - A%2-D).
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Vi)

3. Answer any two questions:

i)

iii)
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Solve the system of equations:

2x—3y+z=1,x+2y—3z=4,4x—y—2z=38.

a)

b)

b)

10x2=20

Show that the planes passing through the

origin is a proper subspace of R>.

Let T:R3® - R3 be a linear transformation
given by
T(x,y,z2)=(x+z,x+y+222x+y+32).

Verify rank(T) + nullity(T) = 3. 4+6

Show that every orthogonal matrix A can
be expressed as (1+S5)(1-5)"1 by a
suitable choice of a real skew-symmetric
matrix S, provided (—1) is not an eigen

value of 4.

Diagonalize the matrix

1 -1 1

A= (—1 1 —1>, by finding a
1 -1 1

nonsingular matrix P such that the diagonal

matrix p — p-14p. 4+6

When a system of linear equations is called
consistent? Give an example of a system

of linear equations which is inconsistent.
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b) Apply the rank test to examine if the
following system of equations is
consistent and if so, then find the
complete solution of

x+2y—z=63x—y—2z=3,4x+3y+z=9.
2+8
1v) a)  Show that the set
S ={(1,0,0),(1,1, 0),(1,1,1),(0,1,0)}
spans the vector space R3but is not a basis.

b)  Find the co-ordinate vector of @ = (2,3,1)

relative to the basis
{(1,1,1),(1,1,0), (0,1,0)}.

c¢) Construct an one-dimensional subspace of
R® containing the vector (1, 2, 3).

5+3+2
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Course Code : MATH-G-DSE-T-1B
(Complex Analysis)

1.  Answer any ten questions from the following:
2x10=20
a) Show that the function f(z) =x*+»* 1is not
analytic at any point.
b)  Use the definition of limit to show that

lim z = 7.
zZ—2)

¢) Ifz and z, are any two complex numbers, show
that |1 - 2,z 4z - 2% = (1 - |21 )1 - |2/,

d) Show that an analytic function with constant
modulus is constant.

e) Show that the function

x3(1 +10) - y3(1 )
£ - { Ea
0, forz=0

is continuous and satisfies the Cauchy-Riemann
equation at z = 0.

f)  If]z1] = |22| = 1and amp (z;) + amp (z2) = 0, then show
that z;z = 1.

g)  Show that the function f(z) = 2° is analytic in a

domain D of the complex plane C.

h)  Prove that

dz . .
/ 2—‘ < % where C is the circle
c 22+ 10

C: z(t) = 2¢t, (-7 <t < 7).
i)  If a=cosd +ising, obtain the value of ¢in [0, 7]
such that &* = i..
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1) Show that 1im "% - 4.

z—2i z - 21

k)  Evaluate /c (32 - 22) dz,, where C is the contour
defined by z(t) =t + it?, t € [0,1].
1)  Show that the function f(z) = xy + iy is

continuous everywhere but not differentiable.

m) Find the domain of convergence of this series

00 2 n

Z z¢+1
nz( .>
1+1 :

n=0
R #0 . .
n) Provethat f(z)= 2565 2% Vs continuous at
0 ,z=0
z=0.
z z#0
o) Show that the function f(z)=4 z’
0 ,z=0
is discontinuous at z = 0.
Answer any four questions: 5%x4=20

a) Let f(d = [z%. Show that the derivative of f{z)

exists only at the origin.

b) Find the radius of convergence of the power

series

and also prove that (2 - 2)f(z) -2 — 0 as z — 2.
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c) State and prove Liouville’s theorem.

d) If a complex function fis differentiable and |f]
is constant in a rectangular region D, prove that

fis constant in D.

e) Letu(xy) = ¢ cosy. Determine a function v(x, y)

such that /= u + iv is analytic.

f)  State Cauchy’s integral formula. Use this

formula to find the value of
3 _
/ z2 +3z-1 iz
cz¢-3z+2
where C is the circle |z| = 3.

Answer any two questions: 10x2=20

a) 1) Iff{z) be defined in some neighbourhood
of the point z =x +iy, and
fx)=u(x, y)+iv(x, y), then show that f is
continuous at z, if and only if both u(x, y)

and v(x, y) are continuous at (x,, y,).

11)  Check whether for any complex number

z, |e#| < el#. holds or not. 6+4

b) 1)  Consider the function f defined by

whenz =0
0,
f(2)=1x -y +l,(x3+y3)

5 when z == 0

X +y’ X +y
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Show that the function f satisfies the
Cauchy-Riemann equation at origin, but f°

is not differentiable at z = 0.

Discuss the convergence of the series

(o)

1
Z (22 + 1) 6+4

n=1

For what values of z does the series

Z(_l)(zn + Zn+1)
n=0

converge and find its sum.

Va ua e |Z‘=3 (Z— 2)3 :

For what values of z do the function w
defined by the following equation cease
to be analytic?

z=—¢ ¥(cos u+ isin u), w=u-+iv and
z = sin u cos(iv) + cos usin(iv).

Discuss the convergence of the series

22—) : 6+4

n=0
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