U.G. 5th Semester Examination - 2021

MATHEMATICS

[PROGRAMME]

Discipline Specific Elective (DSE) Course Code : MATH-G-DSE-T-1A&B

Full Marks : 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks. The notations carry their usual meanings. Answer all the question from selected Option.

Course Code : MATH-G-DSE-T-1A (Matrices and Linear Algebra)

1. Answer any **ten** questions from the following:

2×10=20

- i) Find all non-null matrices of the form $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ whose squares are equal to the null matrix.
- ii) Find the dimension of the subspace $\{(x, 2x): x \in R\}$ of R^2 .

iii) If
$$= \begin{pmatrix} 2 & 5 \\ 3 & 1 \end{pmatrix}$$
, then find $(A^2 - 3A - 13I)$.

- iv) If U and W are two subspaces of a vector space V over F then check whether $U \cup W$ is a subspace or not.
- v) Check whether $\{(x, x + 1): x \in R\}$ is a subspace of R^2 or not.
- vi) How many solutions are there for the simultaneous equations: +y = 1; 3x + 3y = 1? Justify your answer.
- vii) A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by T(x, y) = (x, 0). Check whether it is linear or not.
- viii) If $\alpha = (a, b), \beta = (a + b, b a)$, and $\gamma = (b, a)$, find suitable scalars p, q such that $p\alpha + q\beta = \gamma \text{ in } R^2$.
- ix) If the vectors (0, 1, a), (1, a, 1), (a, 1, 0) of the vector space R^3 be linearly dependent, then find the value of *a*.
- x) Find the eigen values of $A = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$.
- xi) If λ be an eigen value of an orthogonal matrix A, then show that $\frac{1}{\lambda}$ is also an eigen value.
- xii) If W_1, W_2, W_3 , be three subspaces of a vector space V over F, then find the smallest subspace contained in each of the above subspaces.

[Turn Over]

595/ Math

- xiii) Compute the inverse of the matrix: $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}.$
- xiv) If $W = \{(x, 2y, 3z): x, y, z \in R\}$, then show that W is a subspace of R^3 .
- xv) Show that $Ker \phi$, where $\phi: V \to W$, is a linear transformation between two vector spaces *V*, *W* over a field *F*, is a subspace of *V*.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - i) Show that the vectors $\{(1,2,1), (2,1,0), (1,-1,2)\}$ form a basis of the vector space R^3 over R.
 - ii) Show that every square matrix can be expressed uniquely as a sum of a symmetric and a skewsymmetric matrix.
 - iii) Verify Cayley Hamilton theorem for the matrix: $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.
 - iv) Prove that the points (x_i, y_i) , i = 1, 2, 3, are collinear, if and only if the rank of the matrix

$$\begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix}$$
 be less than three.

v) If
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & -0 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
, then evaluate $(A^3 - A^2 - I)$.

(3)

vi) Solve the system of equations:

$$2x - 3y + z = 1, x + 2y - 3z = 4, 4x - y - 2z = 8.$$

- 3. Answer any **two** questions: $10 \times 2=20$
 - i) a) Show that the planes passing through the origin is a proper subspace of R^3 .
 - b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation given by

T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z).

Verify rank(T) + nullity(T) = 3. 4+6

- ii) a) Show that every orthogonal matrix A can be expressed as $(I + S)(I - S)^{-1}$ by a suitable choice of a real skew-symmetric matrix S, provided (-1) is not an eigen value of A.
 - b) Diagonalize the matrix $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$, by finding a nonsingular matrix P such that the diagonal matrix $D = P^{-1}AP$. 4+6
- iii) a) When a system of linear equations is called consistent? Give an example of a system of linear equations which is inconsistent.

595/Math

595/ Math

b) Apply the rank test to examine if the following system of equations is consistent and if so, then find the complete solution of

$$x + 2y - z = 6, 3x - y - 2z = 3, 4x + 3y + z = 9.$$

2+8

iv) a) Show that the set

 $S = \{(1, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 0)\}$ spans the vector space R^3 but is not a basis.

b) Find the co-ordinate vector of $\alpha = (2, 3, 1)$ relative to the basis

 $\{(1,1,1), (1,1,0), (0,1,0)\}.$

c) Construct an one-dimensional subspace of R^3 containing the vector (1, 2, 3).

5+3+2

Course Code : MATH-G-DSE-T-1B

(Complex Analysis)

1. Answer any **ten** questions from the following:

2×10=20

- a) Show that the function $f(z) = x^2 + y^2$ is not analytic at any point.
- b) Use the definition of limit to show that $\lim_{z \to z_0} \bar{z} = \bar{z}_0.$
- c) If z_1 and z_2 are any two complex numbers, show that $|1 - \overline{z}_1 z_2|^2 + |z_1 - z_2|^2 = (1 - |z_1|^2)(1 - |z_2|^2)$.
- d) Show that an analytic function with constant modulus is constant.
- e) Show that the function

$$f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{|z|^2}, & \text{for } z \neq 0\\ 0, & \text{for } z = 0 \end{cases}$$

is continuous and satisfies the Cauchy-Riemann equation at z = 0.

- f) If $|z_1| = |z_2| = 1$ and $amp(z_1) + amp(z_2) = 0$, then show that $z_1z_2 = 1$.
- g) Show that the function $f(z) = z^3$ is analytic in a domain *D* of the complex plane *C*.
- h) Prove that $\left| \int_{c} \frac{dz}{z^{2} + 10} \right| \leq \frac{2\pi}{3}$, where *C* is the circle *C* : $z(t) = 2e^{it}, (-\pi \leq t \leq \pi)$.
- i) If $a = \cos \theta + i \sin \theta$, obtain the value of θ in $[0, \pi]$ such that $a^3 = i$..

595/ Math (6)

- j) Show that $\lim_{z\to 2i} \frac{z^2+4}{z-2i} = 4i$.
- k) Evaluate $\int_C (3z^2 2z) dz$, where *C* is the contour defined by $z(t) = t + it^2, t \in [0, 1]$.
- 1) Show that the function f(z) = xy + iy is continuous everywhere but not differentiable.
- m) Find the domain of convergence of this series

$$\sum_{n=0}^{\infty} n^2 \left(\frac{z^2+1}{1+i}\right)^n.$$

n) Prove that $f(z) = \begin{cases} z \operatorname{Re} z, z \neq 0 \\ 0, z = 0 \end{cases}$ is continuous at z = 0.

o) Show that the function
$$f(z) = \begin{cases} \frac{\overline{z}}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

is discontinuous at z = 0.

- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) Let $f(z) = |z|^2$. Show that the derivative of f(z) exists only at the origin.
 - b) Find the radius of convergence of the power series

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{2^n + 1}$$

(7)

and also prove that $(2-z)f(z) - 2 \rightarrow 0$ as $z \rightarrow 2$.

- c) State and prove Liouville's theorem.
- d) If a complex function f is differentiable and |f| is constant in a rectangular region D, prove that f is constant in D.
- e) Let $u(x, y) = e^x \cos y$. Determine a function v(x, y)such that f = u + iv is analytic.
- f) State Cauchy's integral formula. Use this formula to find the value of

$$\int_C \frac{z^3 + 3z - 1}{z^2 - 3z + 2} \, dz$$

where *C* is the circle |z| = 3.

- 3. Answer any **two** questions: $10 \times 2=20$
 - a) i) If f(z) be defined in some neighbourhood of the point $z_0 = x_0 + iy_0$ and f(x) = u(x, y) + iv(x, y), then show that f is continuous at z_0 if and only if both u(x, y)and v(x, y) are continuous at (x_0, y_0) .
 - ii) Check whether for any complex number $z, |e^z| \le e^{|z|}$. holds or not. 6+4
 - b) i) Consider the function f defined by when z = 0

$$f(z) = \begin{cases} 0, \\ \frac{x^3 - y^3}{x^2 + y^2} + i \frac{(x^3 + y^3)}{x^2 + y^2} & \text{when } z \neq 0 \\ (8) \end{cases}$$

595/ Math

Show that the function f satisfies the Cauchy-Riemann equation at origin, but f is not differentiable at z = 0.

ii) Discuss the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1}{(z^2+1)^n}.$$
 6+4

c) i) For what values of z does the series

$$\sum_{n=0}^{\infty} (-1)(z^n + z^{n+1})$$

converge and find its sum.

ii) Evaluate
$$\int_{|z|=3} \frac{3z^4 + 2z - 6}{(z-2)^3} dz.$$
 5+5

d) i) For what values of z do the function w defined by the following equation cease to be analytic?

$$z = -e^{-\nu}(\cos u + i\sin u), w = u + iv \text{ and}$$

 $z = \sin u \cos(iv) + \cos u \sin(iv).$

ii) Discuss the convergence of the series

$$\sum_{n=0}^{\infty} \frac{(n!)^2}{2n!} z^n. \qquad 6+4$$