574/Phs

UG/5th Sem/PHY-G-DSE-T-01//21

U.G. 5th Semester Examination - 2021 PHYSICS

[PROGRAMME]

Discipline Specific Elective (DSE)

Course Code: PHY-G-DSE-T-01

Full Marks: 40

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer all the questions from Selected Option.

OPTION-A

PHY-G-DSE-T-01

(Mechanics)

GROUP-A

1. Answer any **five** of the following questions:

 $2 \times 5 = 10$

- a) What is meant by solenoidal vector?
- b) What do you mean by exact differential equation? Give an example.
- c) If the position vector of a particle changes from $\vec{r} = 3\hat{i} + 4\hat{J} + 5\hat{k}$ to $\vec{r}_f = 12\hat{l} + 17\hat{J} 5\hat{k}$ due

to the force $\vec{F} = 6\hat{i} - 2\hat{J} - 4\hat{k}$, then calculate the work done by the force.

- d) Define conservative force field. Is frictional force conservative?
- e) At what points on the path of a simple harmonic motion are the velocity and acceleration are maximum? At what points are they minimum?
- f) State the principle of conservation of angular momentum.
- What are the differences between gravitational potential and electrostatic potential?
- h) How does elasticity of a material depend on temperature?

GROUP-B

2. Answer any **two** questions:

 $5 \times 2 = 10$

- a) Calculate $\vec{\nabla}\left(\frac{1}{r}\right)$. If a scalar function is given by $\phi(x,y,z) = 2xz^4 x^2y + y^2x \;, \; \text{ then calculate}$ grad (ϕ) at (2,-2,-1).
- Determine the limiting values of Poisson's ratio (σ). A 0.5 m long and 1 mm diameter wire is twisted by 45° by applying 0.43 N-m torque at one end. Calculate the rigidity modulus of the material of wire.

- where R: radius of the planet is $v=R\sqrt{\frac{8\pi G\rho}{3}}$ where R: radius of the planet and G: gravitational constant.
- d) Write short notes on time dilation and length contraction. $2\frac{1}{2}+2\frac{1}{2}$

GROUP-C

Answer any **two** questions:

 $10 \times 2 = 20$

- 3. a) What is meant by pseudo force? Give example.
 - b) Prove that gravitational force field is conservative.
 - c) A particle of mass m moves on a straight line with velocity given by $v = a\sqrt{x}$ where, a is a constant and x is the distance travelled. Find the total work done due to the displacement from x=0 to x=d.
- 4. a) Obtain the differential equation of a damped harmonic oscillation and solve the equation for oscillatory solution.

- b) The equation of a simple harmonic motion is given by $3\frac{d^2x}{dt^2}+12x=0$ determine the amplitude and frequency of motion.
- What are Lissajous figures? (2+3)+3+2
- 5. a) Define Young's modulus, Poisson's ratio and rigidity modulus.
 - b) Show that a shear is equivalent to an equal elongation and compression at right angles to each other.
 - c) Calculate the work done in stretching a uniform metal wire of area of cross-section 10^{-6}m^2 and length 1.5 m through 4×10^{-3} m. Given $Y = 2 \times 10^{11} \text{ Nm}^{-2}$.
- 6. a) State Kepler's laws of planetary motion.

 Deduce law of gravitation from Kepler's law.
 - b) What is escape velocity? Find an expression for it.
 - c) The escape velocity of a body on the surface of the earth is 11.2 km/s. A body is thrown vertically upward from the surface of the earth with a velocity three times the escape velocity. What will be the velocity of the body at a distance far away from the earth?

(2+3)+3+2

OPTION-B

PHY-G-DSE-T-01

(Electricity and Magnetism)

GROUP-A

- 1. Answer any **five** questions:
- $2 \times 5 = 10$
- a) If the magnitude of a vector \vec{A} is constant then show that $\vec{A} \cdot \frac{d\vec{A}}{dt} = 0$
- b) Determine the electric field due to the potential $\phi(r) = \left(\frac{A}{r}\right) e^{-\lambda r}$.
- c) State the Gausses law for dielectrics.
- d) Apply Gausses theorem to show that no electric field exists inside a charged conducting sphere.
- e) Distinguish between polar dielectrics and nonpolar dielectrics.
- f) State Ampere's circuital law.
- g) Define Poynting vector.
- h) Write down the expression for electromagnetic energy density.

GROUP-B

- 2. Answer any **two** questions : $5 \times 2 = 10$
 - a) Calculate $\vec{\nabla} \left(\frac{1}{r} \right)$ where $r \neq 0$. Verify Gauss

- theorem for the vector field $\vec{R} = x\hat{i} + y\hat{j} + z\hat{k}$ over a surface enclosing the volume of a sphere of radius *a* with center at origin. 2+3
- b) Deduce Laplace's equation from Gauss law. Find out the electrostatic potential and field at a point inside and outside a uniformly charged solid sphere. 2+3
- What is meant by magnetic vector potential? Verify that the vector potential \vec{A} due to a uniform magnetic induction \vec{B} is given by $\vec{A} = -\frac{1}{2}(\vec{r} \times \vec{B}).$ 2+3
- d) Show that the Maxwell equations $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ and $\vec{\nabla} \cdot \vec{B} = 0$ are compatible. Establish the continuity equation relating the charge density and the current density.

GROUP-C

Answer any two questions:

 $10 \times 2 = 20$

- 3. a) What is meant by electric dipole? Define electric dipole moment and polarization vector.
 - b) Determine the potential energy of a dipole in an external electric field.
 - c) A metal sphere of radius a is surrounded out

574/Phs

(5)

[Turn Over]

to a radius b by a linear dielectric material. Determine the capacitance. 3+3+4

- 4. a) What is Lorentz force?
 - b) Starting from Biot-Savart law, show that $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} \; .$
 - c) Find the force between two straight, infinite, parallel wires carrying currents I_1 and I_2 separated by a distance d and placed in air.

2+5+3

- 5. a) State the laws of electromagnetic induction.
 - b) Calculate the self-inductance of a uniformly wound solenoid.
 - c) Show that the equivalent inductance of two coils of self-inductances L_1 and L_2 connected in parallel is given by $L_{eq} = \frac{L_1 L_2 M^2}{L_1 + L_2 \pm 2M}$
 - d) Determine the e.m.f. developed between the terminals of a straight conductor of length l moving with a constant velocity at right angles to a uniform magnetic field \vec{B} . 2+3+3+2
- 6. a) Derive the wave equations for the electric and magnetic fields in vacuum from the Maxwell's equations.
 - b) What are polarized waves?

The magnetic intensity in a region of free space is given by $\vec{H} = H_0 \cos \left(\omega t - \frac{\omega}{c} z \right) \hat{y}$. Determine the displacement current density if there is no free charge. (2+2)+3+3

OPTION-C

PHY-G-DSE-T-01

(Waves and optics)

GROUP-A

1. Answer any **five** of the following questions:

$$2 \times 5 = 10$$

- a) What is meant by plane polarized wave?
- b) Define decibel.
- c) What are beats?
- d) Describe a zone plate.
- e) Define the terms wave velocity, wavelength and frequency.
- f) What are the properties of a wavefront?
- g) Draw the resulting pattern for two rectangular Simple Harmonic Motion of frequency ratio 1:2 and phase difference $\frac{\pi}{2}$.

		state of polarization of a light beam. 5							
	d)	Fresnel and							
		Fraunhofer class of diffraction? What are							
	period zones in the context of								
		diffr	action?	$2\frac{1}{2}+2\frac{1}{2}$					
3.	3. Answer any two questions . 10×								
	a)	i)	Derive the differential	-					
			motion for the transverse vi	brations of a					
			uniform flexible stretched	string. 5					
		ii)	Obtain an expression for the	e frequencies					
			of the normal modes of the	string which					
			is rigidly fixed at its ends.	5					
	b)	i)	State Fourier's theorem. Use	it to analyse					
			a square wave.	2+4					
574/Phs			(9)	[Turn Over]					

Answer any two questions.

bubble.

Calculate the excess pressure inside a spherical

Show that two harmonic oscillations, at right

angles to each other, of equal amplitudes and

frequencies, but with phases differing by $\frac{\pi}{2}$

are equivalent to a uniform circular motion,

the radius of the circle being equal to the

Discuss the procedure for determining the

amplitude of either oscillation.

 $5 \times 2 = 10$

5

5

ii)	Describe	musical	notes	and	musical
	scale.				4

- c) i) Describe the working of a Fresnel biprism and obtain an expression for the fringe separation.
 - ii) What are Newton's rings? How can the wavelength of light be measured with Newton's rings? 2+3
- d) i) What is meant by group velocity and phase velocity? Deduce a relation between them. 2+3
 - ii) Write down the three dimensional wave equation in cartesian coordinate system. What are spherical waves? 2+3

OPTION-D

PHY-G-DSE-T-01

(Thermal Physics and Statistical Mechanics)

GROUP-A

1. Answer any **five** of the following questions:

 $2 \times 5 = 10$

a) Write any one statement of 2nd law of thermodynamics.

574/Phs (10)

- b) Name one boson and one fermion.
- c) Write short note about Gibbs free energy.
- d) What is the change of entropy in a reversible cyclic process?
- e) Write Clausius-Clapeyron equation.
- f) What is Joule-Thomson effect?
- g) Can you attain absolue zero of temperature? Discuss briefly.
- h) Ideal gas obeys which statistics?

GROUP-B

2. Answer any **two** questions:

 $5 \times 2 = 10$

a) What is Zeroth law of thermodynamics? Discuss about the concept of temperature.

3+2

- b) What is entropy? 100gm of water slowly heated from 27°C to 87°C. Calculate the change of entropy in this process. Sp. heat of water=4200J kg⁻¹K⁻¹.
- c) Deduce Stefan-Boltzmann law and Wiens displacement law from Planck's law. 5
- d) What is the work done by a ideal gas in a isothermal process? Compare the slopes of isothermal and adiabatic curves. 2+3

GROUP-C

Answer any two questions:

 $10 \times 2 = 20$

- 3. a) Write Bose-Einstein distribution law and Maxwell-Boltzmann distribution law. Discuss any two properties of electron gas. What is phase space? Write a short note about photon gas. 2+2+2+2=10
 - b) Write any experimental verification of Maxwell's law of distribution of velocity. Write law of equipartition of energy. Write short notes about viscosity of gas and diffusion of gas.

 4+2+2+2
 - Write down 4 Maxwell's relation. Write an expression for $\frac{C_p}{C_v}$ by using Maxwell's relation. Write TdS equations. 4+2+4
 - d) Draw the Carnot's cycle for a Carnot Engine.
 What are the four stages of operation?
 Calculate the work done in each stage. Hence calculate the efficiency of a Carnot engine

2+2+4+2
