U.G. 1st Semester Examination - 2021 MATHEMATICS

[HONOURS]

Course Code : MATH-H-CC-T-01

(Calculus & Analytical Geometry)

Full Marks : 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks. The notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $2 \times 10 = 20$
 - a) Find the point of inflexion, if any, of the curve $x = (\log y)^3$.
 - b) Find the asymptotes of the hyperbolic spiral $r\theta = a$.
 - c) Find the radius of curvature at the point (x, y) on the curve y = log sin x.
 - d) Show that $y = e^x$ is everywhere concave upwards.

- e) If $y = \sin(2\sin^{-1}x)$, show that $(1-x^2)y_2 - xy_1 + 4y = 0$.
- f) Find the differential coefficient of $\tan h^{-1} \frac{x^2 1}{x^2 + 1}$.
- g) Find the volume of the solid generated by revolving the cycloid

 $x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$ about its base.

- h) Determine the centre of the conic $x^2 - 4xy - 2y^2 + 10x + 4y = 0.$
- i) Find the vertex and the length of the latus rectum of the conic.

$$\frac{2l}{r} = 5 - 2\cos\theta.$$

j) Obtain the equation of the sphere having centre at origin and passing through the point (2, 3, 6).

k) If
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n \theta d\theta$$
, then show that $I_2 + I_0 = 1$.

1) Find the value of
$$\int_0^2 \int_0^1 xy(x-y) dy dx$$
.

[Turn Over]

212/Math.

(2)

- m) Find the equation of the straight line $\frac{x}{2} + \frac{y}{3} = 2$ when the origin is transferred to the point (2, 3)
- n) Determine the nature of the conicoid $3x^2 - 2y^2 - 12x - 12y - 6z = 0.$
- o) Evaluate $\lim_{x \to \frac{\pi}{2}} (1 \sin x) \tan x$.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) If P_1 and P_2 are the radii of curvature at the ends of a focal chord of the parabola $y^2 = 16x$,

then show that $P_1^{-\frac{2}{3}} + P_2^{-\frac{2}{3}} = \frac{1}{4}$.

b) Find the asymptotes of the curve

 $4(x^{4} + y^{4}) - 17x^{2}y^{2} - 4x(4y^{2} - x^{2}) + 2(x^{2} - 2) = 0$ and show that they pass through the points of intersection of the curve with the ellipse $x^{2} + 4y^{2} = 4$.

- c) Prove that the curves y² = 4x and x² = 4y divide the square bounded by x=0, x=4, y=0, y=4 into three equal areas.
- d) Find the equation of the tangent plane to the

(3)

paraboloid $2x^2 + 3y^2 = 2z$ parallel to the plane lx + my + nz = 0.

- e) Determine whether the straight line $\frac{x-2}{2} = \frac{y-3}{-6} = \frac{z-1}{1}$ intercepts the hyperboloid of one sheet $\frac{x^2}{16} + \frac{y^2}{9} - \frac{z^2}{4} = 1$, and in case it does, find the points of contact.
- f) Find the pedal equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with respect to the centre as pole.
- 3. Answer any **two** questions: $10 \times 2=20$
 - a) i) If $y=x^{n-1}\log x$, then show that $y_n = \frac{(n-1)!}{x}$, where $y_n = \frac{d^n y}{dx^n}$.
 - ii) Find the lengths of the arc of the equiangular spiral $r = ae^{\theta} \cot \alpha$ between the radii vectors r_1 and r_2 .
 - b) i) Prove that the equation

$$(x-p)^{2} + 2h(x-p)(y-q) - (y-q)^{2} = 0$$

represents a pair of perpendicular lines.

212/Math.

(4)

ii) Prove that the length of the focal chord of the conic ^l/_r=1-ecosθ, which is inclined to the axis at an angle α is ^{2l}/_{1-e² cos² α}.
c) i) If I_{m,n} = ∫₀^{π/2}/₂ cos^m x sin nxdx, then show that

$$I_{m,n} = \frac{1}{2^{m+1}} \left[2 + \frac{2^2}{2} + \frac{2^3}{3} + \dots + \frac{2^m}{m} \right].$$

ii) A plane passes through the fixed point(2, 1, 3) and cuts the coordinate axes inA, B, C. Show that the locus of the centreof the sphere OABC is

$$\frac{2}{x} + \frac{1}{y} + \frac{3}{z} = 2$$
.