204/Phs.

UG/1st Sem/PHY-H-CC-T-1/21

U.G. 1st Semester Examination - 2021 PHYSICS

[HONOURS]

Course Code: PHY-H-CC-T-1

(Mathematical Physics-I)

Full Marks: 40

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **five** questions:

 $2 \times 5 = 10$

- a) A particle of mass m is acted upon by a force whose potential energy is given by $\Phi = ax^2 bx^3$. Calculate the force.
- b) Find the angle between the surface defined by $x^2+y^2+z^2=9$ and $x+y+z^2=1$ at the point (2, -2, 1)
- c) Grad U=2r⁴r. Find U.
- d) Is this equation $(y^2e^{xy^2}+4x^3)dx + (2xye^{xy^2}-3y^2)dy=0 \text{ an exact equation?}$

[Turn over]

- e) Find the distance which an object moves in time t if it starts from rest and has an acceleration $\frac{d^2x}{dt^2} = ge^{-kt}$ where k is a constant.
- f) The solution of the differential equation $\frac{dy}{dx} = -\frac{x}{y+I}$ belong to which family?
- Consider the differential equation $\frac{dy}{dx} = xy$. If y = 2 at x = 0, then calculate the value of y at x = 2.
- h) What is the value of $\int_{-\infty}^{\infty} x \delta(x-4) dx$?
- 2. Answer any **two** questions:
 - a) Let $x_1(t)$ and $x_2(t)$ be two linearly independent solutions of the differential equation $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + f(t) = 0.$ Let Wronskian $w(t) = x_1(t)\frac{dx_2(t)}{dt} x_2(t)\frac{dx_1(t)}{dt}$

If Wronskian w(0)=1, then evaluate w(1). Consider the differential equation $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 0.$ At time t = 0, it is given that $x = 1 \text{ and } \frac{dx}{dt} = 0.$ Find the value of x at t=1.

 $2\frac{1}{2}+2\frac{1}{2}$

 $5 \times 2 = 10$

204/Phs.

(2)

- The direction of two unit vector \mathbf{n}_1 and \mathbf{n}_2 given b) by spherical polar angles (θ_1, Φ_1) and (θ_2, Φ_2) respectively where Θ and Φ are the polar angle and the azimuthal angle. Show that the angle β between n_1 and n_2 is given by
 - $\cos\beta = \cos\theta_1 \cos\theta_2 + \sin\theta_1 \sin\theta_2 \cos(\Phi_1 \Phi_2)$ 5
- Solve the differential equation $x \frac{dy}{dx} + y = x^4$, c) with the boundary condition that y=1 at x=1Solve $(1+x)\frac{dy}{dx} - y = e^{x}(1+x)$. 2+3
- The work done by a force in moving particle of d) mass 'm' from any point (x,y) to a neighboring point (x+dx, y+dy) is given by $dW=2xydx+x^2dy$. Evaluate the work done for a complete cycle around a unit circle.

If the surface integral of the field $A(x, y, z) = 2\alpha xi + \beta yj - 3\gamma zk$ over the closed surface of an arbitrary unit sphere is to be zero, then what will be the relationship between $2\frac{1}{2} + 2\frac{1}{2}$ α , β and γ ?

- 3. Answer any **two** questions:
 - Represent the vector $\mathbf{A}=\mathbf{z}\mathbf{i}-2\mathbf{x}\mathbf{j}+\mathbf{y}\mathbf{k}$ in cylindrical co-ordinate system. Hence determine, A_{ρ} , A_{Φ} and A_. Let 'C' be a closed curve in the xy plane. Vector

 $10 \times 2 = 20$

A is given by A = -iy + jx, Applying Stoke's law prove that $\oint_C A \cdot dr = 2S$, where S is area closed by the curve. Hence show that the area of a circle is πa^2 (a = radius of the circle). 5+3+2

- If Ψ_1 and Ψ_2 be the scalar point functions having continuous derivatives at least of second order. then show that
- $\iiint (\Psi_1 \nabla^2 \Psi_2 \Psi_2 \nabla^2 \Psi_1) dx dy dz = \iint (\Psi_1 \nabla \Psi_2 \Psi_2 \nabla \Psi_1) dS$ Using Green's theorem. evaluate $\int_C (x^2ydx + x^2dy)$ where C is boundary described counter clockwise of the triangle with vertices (0, 0), (1, 0) and (1, 1)Consider a vector field **F=iy+xz³j-zyk**. Let C be the circle $x^2+y^2=4$ on the plane z=2, originate counter clockwise. Calculate the line integral $\oint_{\mathcal{C}} F. dr.$ 5+3+2

(4)

c) Find the general solution to the differential equation

$$m\frac{d^2x}{dt^2} + C\frac{dx}{dt} + kx = Sin(\omega t)$$
, where m,C,k and ω are constants.

The vector field

$$\mathbf{A} = (z^2 + 2xy)\mathbf{i} + (x^2 + 2yz)\mathbf{j} + (y^2 + 2zx)\mathbf{k}.$$

Show that the line integral $\int \mathbf{A} \cdot d\mathbf{r}$ along any line joining (1,1,1) and (1,2,2) has the value 11.

d) Verify the divergence theorem for $\mathbf{A}=4x\mathbf{i}-2y^2\mathbf{j}+z^2\mathbf{k}$ taken over the region bounded by $x^2+y^2=4$; z=0 and z=3.

Show that the vector $\mathbf{A} = f(r)\mathbf{r}$ is irotational, but that it is also solenoidal only if f(r) is of the form $\frac{C}{r^3}$, where c is a constant.

Evaluate
$$\int_{(0,0)}^{2,1} (10x^4 - 2xy^3) dx - 3x^2y^2 dy$$

along the path $x^4 - 6xy^3 = 4y^2$.
