6th-Sem-Internal Question for the Department of Mathematics (Kandi Raj College) – 2022

Question Paper for Honours students: Marks distribution: CC-13 = 10 ; CC-14 = 10 ; DSE-3 = 10 ; DSE-4 = 10

[Answer all Papers in Separate answer sheets and upload separately:]

	CC-13	[10]
[A]	Answer any One (1) question	
1.	Let $f(z) = (xy)^{1/2}$. Show that f '(0) does not exist but the C-R equations are satisfied at the	[5]
	origin.	
2.	Evaluate the following integral by using Cauchy's integral formula	[5]
	$rac{1}{2\pi i}\int_C^{\cdot}rac{e^{zt}}{z^2+1}dz,\mathrm{t}>0$	
	Where C is the circle $ z = 3$.	
[B]	Answer any One (1) question	
1.	Prove that a metric space (X, d) is compact iff every family of closed subsets of X having FIP	
	has nonempty intersection.	
2.	In C[0,1] with sup metric, show that $\{f_n\}$, where $f_n(x) = \frac{nx}{n}$, $0 \le x \le 1$ is a Cauchy	

sequence. Find $\lim_{n \to \infty} f_n$.

CC-14

1.

[10]

Answer any Two (2) questions

1. Let a linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (3x + 3y, x + 5y), (x, y) \in \mathbb{R}^2$ prove that T is diagonalizable.

- 2. Let $B = \{(-1,1,1), (1,-1,1), (1,1,-1)\}$ be the basis of $V_3(R)$. Find the dual basis of B.
- 3. Show that set of all polynomials with even co-efficient is a prime ideal in Z[x].

DSE-3	[10]
Answer any Two (2) questions	
Prove that the linear system $x \equiv a \pmod{m}$; $x \equiv b \pmod{n}$, is solvable if and	[3+2]
only if $(m, n) (a - b)$.	

When it is solvable, show that the solution is unique modulo [m, n].

2. If *p* is an odd prime, show that
$$\left[\left(\frac{p-1}{2}\right)!\right]^2 + (-1)^{\frac{p-1}{2}} \equiv 0 \pmod{p}.$$
 [3+2]

Using it, show that, if $p \equiv 3 \pmod{4}$, then, $\left[\left(\frac{p-1}{2}\right)!\right]^2 \equiv 1 \pmod{p}$.

3. Let $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$, for n > 1; if f is a multiplicative function, not everywhere zero, [4+1] then show that,

$$\sum_{d|n} \mu(d) f(d) = (1 - f(p_1)) \dots (1 - f(p_r))$$

Use it to show that, $\sum_{d|n} \mu(d) d = (1 - p_1) \dots (1 - p_r)$

DSE-4

Answer any Two (2) questions

- 1. If each force of a system of coplanar forces be replaced by three forces, acting along the sides [5] of a triangle in the plane of forces of type p.BC, q.CA and r.AB, show that the necessary and sufficient conditions that the system reduces to a couple are that $\sum p = \sum q = \sum r$.
- 2. Two heavy rings slide on a fixed smooth parabolic wire whose axis is horizontal and the rings [5] are connected by a string which passes over a smooth peg at the focus. Prove that in the position of equilibrium the depths of the rings below the axis of the parabola are proportional to their weights.
- 3. A heavy uniform rod of length 2*a*, rests partly inside and partly outside a fixed smooth [3+2] hemispherical bowl of radius *r*. The rim of the bowl is horizontal and one point of the rod is in contact with the rim. If θ be the inclination of the rod to the horizon, show that $2r \cos 2\theta = a \cos \theta$.

Also show that the equilibrium of the rod is stable.

[10]