2022

CHEMISTRY

[HONOURS]

Paper: VII

Full Marks: 80

Time: 4 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any **two** questions:

 $1 \times 2 = 2$

- a) Give structure of a molecule which is optically active but has no chiral centre.
- b) Calculate the CFSE of $[NiCl_4]^{2-}$ in terms of Dq. The complex is paramagnetic having $\mu_{s,o} = 2.83 \, \text{BM}$.
- c) Give the appropriate mathematical expression of $\mu_{\rm eff}$.
- d) Calculate the spin only magnetic moment of tetrahedral [CoCl₄]⁻ complex.

2. Answer any **two** questions:

 $2\times2=4$

- a) Calculate the CFSE of d6 ion in tetrahedral ligand field in terms of Δ_0 .
- b) List the elements of symmetry present in D_{sd} point group.
- Find the symmetry point group of staggered ferrocene indicating the symmetry elements present.
- d) d orbitals of transition metal ions split into t_{2g} and e_{g} levels in octahedral ligand field. Why 'g' subscript is used in t_{2g} and e_{g} ? Illustrate.
- 3. Answer any **four** questions:

 $6 \times 4 = 24$

- a) Explain the experimental procedure (with diagram) for determining the magnetic moment by Gouy method.
- b) i) '[Fe(phen)₂(NCS)₂] is high spin at room temperature while it is low spin below 175K.' Explain.
 - ii) State the structures of Mn_3O_4 and Fe_3O_4 in terms of spinel and inverse spinel. 3+3
- c) i) Comment on the dipole moments of CHCl₃, CH₃Cl and CH₂Cl₂ employing symmetry arguments.

- ii) 'Presence of C_6 symmetry element confirms presence of C_3 '- Justify.
- iii) Compare the magnetic moments of $[NiBr_4]^{2-}$ and $[PdCl_4]^{2-}$. 2+2+2
- d) i) One complex of Fe²⁺ is colored due to d-d transition, but another Fe²⁺ complex very pale colored. Explain with appropriate illustration.
 - ii) The Δ_0 value of $[Mn(H_2O)_6]^{3+}$ is 15,800 cm⁻¹ while the mean pairing energy in this complex is 28000cm⁻¹. Predict whether the complex is high spin or low spin.
 - iii) Why CO is a better ligand than CNfor stabilization of lower oxidation state of transition metal ions?

$$1+2\frac{1}{2}+2\frac{1}{2}$$

e) i) Find the symmetry point groups of the following species and write down all the symmetry elements present

$$[Co(en)_3]^{2+}$$
, $H \subset C = C \subset H$, $[FeCl_6]^{3-}$

ii) State two limitations of crystal field theory.

- iii) Why $[CoCl_4]^{2-}$ is tetrahedral whereas $[PtCl_4]^{2-}$ is square planar? Explain using VBT. 3+1+2
- f) i) Calculate the CFSE of d^2 metal ion in terms of Δ_{oct} under tetrahedral ligand field.
 - ii) What would be the CFSE of $t_{2g}^5 e_g^0$ configuration?
 - iii) Give example of a molecule having S_4 symmetry element. Illustrate.
 - iv) 'The structure of [(L)₃Mn] is not octahedral'— Predict its structure and draw.

$$L \equiv \begin{array}{c} Ph \\ S \\ Ph \\ S \end{array}$$

- 4. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Discuss the bonding (VBT) and magnetic properties of high-spin and low-spin Co(III) complexes in octahedral ligand field.
 - ii) Explain why the stability of octahedral Cu(II) complexes with bidentate ligands.

- iii) Explain the pattern of variation of hydration enthalpy of M²⁺ ions across the 1st transition series considering octahedral field only.
- iv) Prove that S_2 is nothing but an inversion. 3+2+3+2
- b) i) Explain how magnetic susceptibility is measured by Gouy method. Give experimental set up, measurements, calculation, theory and diamagnetic corrections.
 - ii) Give example of a molecule where S_6 symmetry element is present.
 - iii) If the molecular plane of H₂O is XZ plane, then which p orbital is symmetric with respect to all the symmetry elements of H₂O.

 $6+1\frac{1}{2}+2\frac{1}{2}$

GROUP-B

- 5. Answer any **two** questions: $1 \times 2=2$
 - a) Write down the IUPAC nomenclature of $K_2[Pt(C_2H_4)Cl_3]$.
 - b) Draw the structure of Tebbe's reagent.

- c) What are the common oxidation states of Ir?
- d) Name an enzyme associated with ion transport across the cell membrane.
- 6. Answer any **two** questions: $2 \times 2 = 4$
 - a) Draw the structural formula of $[W_2Cl_9]^{3-}$ and comment on W-W bond order.
 - b) Draw the structure of $\left[\left(\eta^5 Cp\right)_2 TiCl_2\right]$ and its Lewis acid base property.
 - c) Name the enzymes containing Mo and Fe. Name one natural source of the enzyme.
 - d) How Pb²⁺/Pb⁴⁺ can be detoxified?
- 7. Answer any **four** questions: $6 \times 4 = 24$
 - a) Discuss the mechanism of Wacker oxidation process catalysed by Pd complexes.
 - b) i) Draw the structure of tetraphenyl porphyrin.
 - ii) How the tetraphenyl porphyrin can be prepared?
 - iii) Show its number of π electrons.

2+3+1

- c) Draw the active site structure of chlorophyl. What is its role in synthesis of glucose from CO_2 and H_2O .
- d) Compare and contrast the chemistries of Nb and Ta with respect to separation and halo compounds.
 3+3
- e) What is meant by 'active transport'? Is Na⁺ and K⁺ transport across the cell membrane active transport? Furnish the mechanism of the transport. 2+1+3
- f) i) Give two methods of synthesizing alkyl zinc compounds (Equations only). "Alkyl zinc compounds are utilised for chemical synthesis"— Give two examples.
 - ii) Draw the structural formulae of two organozinc complexes incorporating cyclopenta dienlyl ligands. State whether the complexes obey 18 electron rule or not. (2+2)+2
- 8. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Draw the structure of the active site of Myoglobin and discuss its role in oxygen transport by haemoglobin.

- ii) Discuss on the calcium ion transport across cell membrane indicating the roles of plasma membrane Ca²⁺ ATPase and Sarcoplasmic Reticulum Ca²⁺ ATPase. 6+4
- b) i) Draw the structural formulae of A, B and C.

iii) Discuss on the photosystems– PS-I and PS-II showing the Z scheme and electron transfer. Draw the structure of chlorophyl. $(1\frac{1}{2}\times3)+5\frac{1}{2}$

35(Sc) [8]