736/Math.

UG/6th Sem/MATH-H-CC-T-14/22

U.G. 6th Semester Examination - 2022

MATHEMATICS

[HONOURS]

Course Code: MATH-H-CC-T-14

(Ring Theory and Linear Algebra)

Full Marks: 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

- 1. Answer any **ten** questions: $2 \times 10 = 20$
 - i) If *I* is an ideal of a ring with unity *R* and $u \in I$ where *u* is a unit element of *R*, then prove that I = R.
 - ii) Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Then find a basis for the vector space

$$S = \left\{ aA^2 + bA + cI : a, b, c \in \mathbb{R} \right\}.$$

iii) Let *V* be a vector space and *U* is a subspace of *V*. Prove that

$$U_a = \left\{ f \in V^* : f(u) = 0 \text{ for all } u \in U \right\}$$

[Turn Over]

is a subspace of V^* , where V^* is the dual space of V.

- iv) If $gcd(m,n) = 1\left(x \frac{m}{n}\right) | \left(a_0 + a_1x + ...a_rx^r\right)$ where all a_i 's are integers, then prove that $m | a_0$ and $n | a_r$.
- v) Let $S = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = k\}$ is a subspace of \mathbb{R}^3 . Find the value of k. Then find orthogonal complement of S.
- vi) Let $\lambda_1 \neq \lambda_2$ be two eigenvalues of a matrix A and u_i is an eigenvector to λ_i , i = 1, 2. Then show that u_1 and u_2 are linearly independent.
- vii) Let the matrix A has eigen value 7 with eigen vector $v = (4, -11, 7)^T$ and B = A 4I. Find an eigen value and its eigen vector of B.
- viii) Let C[0,2], the set of all real valued continuous functions on [0,2] with inner product $\langle f,g\rangle=\int_0^2 f(x)\,g(x)\,dx$ for $f,g\in C[0,2]$.

Find the distance between

$$f(x) = 4x + 1 \text{ and } g(x) = \sqrt{3 - x}.$$

ix) Consider an $n \times n$ matrix $A = (a_{ij})$ with $a_{12} = 1, a_{ij} = 0 \forall (i, j) \neq (1, 2)$. Prove that there is no invertible matrix P such that PAP^{-1} is diagonal.

736/Math.

(2)

- x) Let F be a field and $\phi: F \to F$ be an homomorphism. Show that ϕ is either an isomorphism or $\phi(a) = 0$ for all $a \in F$.
- xi) Show that $x^3 9$ is reducible over \mathbb{Z}_{11} .
- xii) Let V be the space of all $n \times n$ matrices and B be any fixed matrix in V. If f is the trace function on V and $T: V \to V$ is a linear operator defined by T(A)=AB-BA, then what is $T \cap f$ (T is the transpose of T)?

xiii) Let
$$A = \begin{bmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{bmatrix}$$
,

where a, b and c are real numbers. Then show that the characteristics polynomial of A is equal to the minimal polynomial for A.

- xiv) If A, B are ideals in a ring R and $A \cap B = \{0\}$ Then show that for any $a \in A, b \in B, ab = 0$.
- xv) Let T be the linear operator on \mathbb{R}^2 , matrix of which (in the standard basis) is $\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$. Find the invariant subspaces of \mathbb{R}^2 under T.

2. Answer any **four** questions:

 $5 \times 4 = 20$

Let A be any 2×2 matrix over \mathbb{C} and let

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

be any polinomial over \mathbb{C} . Show that f(A) is a matrix which can be written as c_0I+c_1A for some c_0 , $c_1\in\mathbb{C}$ where I is the identity matrix.

- ii) Let *R* be a Euclidean Domain and let *a* and *b* be nonzero elements of R. Let *d* be greatest common divisor of *a* and *b*, then the principal ideal (*d*) is the ideal generated by *a* and *b*.
- iii) Let a_1, a_2, \dots, a_n be n distinct odd integers. Prove that the polynomial

$$f(x) = (x - a_1)(x - a_2) \cdots (x - a_n) + 1$$

is irreducible in $\mathbb{Z}[x]$.

- iv) Let A be an $n \times n$ real matrix such that $A^2 = I$, but $A \neq \pm I$ (Where I denotes the $n \times n$ -identity matrix). Show that
 - a) A has two eigen values λ_1, λ_2 .
 - b) Every element $x \in \mathbb{R}^n$ can be expressed uniquely as $x_1 + x_2$, where $Ax_1 = \lambda_1 x_1$ and $Ax_2 = \lambda_2 x_2$.

- v) Let $A = (a_{ij})$ be an $n \times n$ matrix such that $a_{ij} = 0$ whenever $i \ge j$. Prove that A^n is the zero matrix.
- vi) Show that every nonzero prime ideal in a Principal Ideal Domain is a maximal ideal. Hence deduce that if R is any commutative ring such that the polynomial ring R[x] is a Principal Ideal Domain, then R. is necessarily a field.
- vii) Let U and V be any two vector spaces over a field F and $\dim U = m$, $\dim V = n$. Show that Hom (U, V), the set of all vector space homomorphisms of U into V, is a vector space over F of dimension mn.
- 3. Answer any **two** questions: $10 \times 2 = 20$
 - i) a) If V is a finite dimensional inner product space and if W is a subspace of V. Then V is the direct sum of W and W^{\perp} , where W^{\perp} is the orthogonal complement of W.
 - b) Show that $(W^{\perp})^{\perp} = W$.
 - c) Let m, n be integers such that gcd (m,n) = 1. Let D be an integral domain, $a,b \in D$. Suppose $a^m = b^m$ and $a^n = b^n$. Prove that a = b. 5+3+2

- ii) Let *D* be a principal ideal domain.
 - a) Show that every element neither zero nor unit in *D* is a product of irreducibles.
 - b) An ideal $\langle p \rangle$ of D is maximal if and only if p is an irreducible.
 - c) For p, a, $b \in D$, where p is an irreducible. If p|ab, then either p|a or p|b. 5+3+2
- iii) Let V be a vector space over a field F, W is a subspace of V and $A(W) = \{f \in V^* | f(w) = 0 \text{ for all } w \in W\}$, where V^* is the dual space of V.
 - a) Show that W^* is isomorphic to $V^*/A(W)$ and $dim\ A(W) = dim\ V dim\ W$, where W^* is the dual space of W.
 - b) Show that, A(A(W)) = W.
 - c) Find A(W), where W = span $\{(1,2,3), (0,4,-1)\}$ is the subspace of $V = \mathbb{R}^3$.

5+2+3

iv) Let V be the inner product space of all polynomial of degree less than or equal to 3 with inner product

$$\langle f, g \rangle = \int_0^1 f(t) g(t) dt \text{ for } f, g \in V.$$

(6)

Show that $\{1, x, x^2, x^3\}$ is a basis for V. Find an orthonormal basis for V by Gram-Schmidt orthogonalisation process.

736/Math.

736/Math.

(5) [Turn Over]