2022 MATHEMATICS [HONOURS] Paper : VII

Full Marks : 100Time : 4 HoursThe figures in the right-hand margin indicate marks.Symbols and notations have their usual meanings.

GROUP-A

- 1. Answer any **five** questions: $1 \times 5=5$
 - a) Define sampling distribution of a statistics.
 - b) Write axioms of probability.
 - c) Define a mixed tensor of rank 2.
 - d) When a function f is called analytic at a point Z_0 ?
 - e) What is discrete distribution?
 - f) What do you mean by analytic function?
 - g) For a continuously differentiable scalar point function $\phi(x, y, z)$ write the geometrical interpretation of ϕ .

h) If the equation $a_j^i v_i = \alpha v_j$ holds for every covariant vector v_i where a is a scalar, show that $a_i^j = \alpha S_i^i$.

GROUP-B

- 2. Answer any **ten** questions: $2 \times 10 = 20$
 - a) If $P(A+B) = \frac{5}{6}$, $P(AB) = \frac{1}{3}$ and $P(\overline{B}) = \frac{1}{2}$ then prove that A and B are independent.
 - b) Show that S_i^i is a mixed tensor of rank 2.
 - c) If $x = \frac{1}{2} \log(x^2 + y^2)$ is harmonic then find its harmonic conjugate.

d) If
$$\vec{r} = a \cos t \hat{i} + a \sin t \hat{j} + b t \hat{k}$$
 find $\left| \frac{d^2 \vec{r}}{dt^2} \right|$.

e) Show that
$$\nabla^2 \left(\frac{1}{r}\right) = 0$$
 where $r = \sqrt{x^2 + y^2 + z^2}$
and $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

 f) Given an example with justification that two events are independent but not mutually exclusive.

[Turn over]

45(Sc)

[2]

- g) State central limit theorem.
- h) For a Random variable X with mean m and variance σ^2 , state Tchebycheff's inequality.
- i) Find the condition such that the bilinear transformation $\omega = \frac{az+b}{cz+d}$ has only one fixed

point.

- j) Show that $\operatorname{curl}\left\{(\vec{a}, \vec{r})\vec{a}\right\} = \vec{0}$, where \vec{a} is a constant vector.
- k) Verify whether f(z) = log(z) is analytic at z=0.
- Prove that the determinant of a tensor of type
 (1, 1) is an invariant.

GROUP-C

- 3. Answer any **five** questions: $6 \times 5=30$
 - a) Show that the function $f(z) = e^{z^4} (z \neq 0)$ and f(0) = 0 is not analytic at z = 0 although Cauchy-Riemann equations are satisfied at the point.
 - b) If the probability distribution of a discrete random variable X is given by $P(X = x) = ke^{-t} (1 - e^{-t})^{x-1}, x = 1, 2, ..., \infty$, find the value of K and also the mean and variance of X.

- c) If $b^{ij}u_iu_j$ is an invariant for arbitrary convariant vector u_i then show that $b^{ij} + b^{ii}$ is a contravariant tensor of rank 2.
- d) State Green's theorem. Verify Green's theorem in plane $\oint (x^2 + y^3) dx + (x^3 + y^2) dy$

where C is the boundary of the pentagon with vertices (0, 0), (1, 0), (2, 1) (1, 2) and (0, 1).

- e) Find Maximum Likelihood estimates of μ and σ^2 for N(μ , σ^2) population.
- f) The probability density function of random variable X is given by

$$f(x) = Ae^{-(x^2+2x+3)}, -\infty < x < \infty$$

Calculate E(X) and Var(X), if exist.

- g) Suppose a force field is given by $\vec{F} = (2x - y + z)\hat{i} + (x + y - z^2)\hat{j} + (3x - 2y + 4z)\hat{k}$. Show that the work in moving a particle once around a circle C in the xy plane with its centre at the origin and radius 3 is 18π .
- h) If $b^{ij}u_iu_j$ is an invariant for arbitrary covariant vector u_i then show that $b^{ij} + b^{ji}$ is a contravariant tensor of rank 2.

45(Sc)	[3]
--------	-----

45(Sc)

[4]

GROUP-D

- 4. Answer any **three** questions: $15 \times 3 = 45$
 - a) i) Applying central limit theorem to a sequence of random variables with Poisson distribution, prove that

$$\lim_{n \to \infty} e^{-n} \sum_{r=0}^{n} \frac{n^{r}}{r^{1}} = \frac{1}{2}$$

- ii) The random variables X, Y are normally correlated with correlation coefficient
 - ρ . Prove that $\frac{X}{\sigma x} + \frac{Y}{\sigma y}$ and $\frac{X}{\sigma x} \frac{Y}{\sigma y}$ independent normal variates with variances $2(1+\rho)$ and $2(1-\rho)$ respectively.
- iii) Assume that $A^{i}B_{i}$ is invariant for all contravariant vector A^{i} . Then show that B_{i} is covariant vector. 5+5+5=15
- b) i) Show that a second order covarient tensor can be expressed as a sum of a symmetric and a skew-symmetric tensor.
 - ii) Verify Stoke's theorem for $\vec{F} = (2x + y)\hat{i} + yz^2\hat{j} + y^2z\hat{k}$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$

45(Sc)

and C is the boundary.

- iii) Verify the divergence theorem for $\vec{A} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$ taken over the region bounded by $x^2 + y^2 = 4$, z = 0 and z = 3. 5+5+5=15
- c) i) Define confidence interval. Find the confidence interval for population mean m for normal (m,σ) population where σ is known.
 - ii) Two independent samples of sizes 8 and7 contained the following values:
 - Sample 1: 19 17 15 21 16 18 16 14

Sample 2: 15 14 15 19 15 18 16

Is the difference between the sample means significant? Test it at 5% level of significance

Given $t_{0.05} (\gamma = 13) = 2.16$.

iii) Find Maximum Likelyhood estimate of μ and σ^2 for N(μ , σ^2) population.

5+5+5=15

d) i) The mean value of a random sample of 60 items was found to be 145, with an SD of 40. Find the 95% confidence

[6]

limits for the population mean. What size of sample is required to estimate the population mean within 5 of its actual value with 95% or more confidence, using sample mean.

Given $P(|Z| \le 1.96) = 0.95$.

- Write the definition of consistent and unbiased estimator of a parameter. Show that although sample variance is consistent estimator of population variance it is not unbiased estimator. Find the unbiased estimator of population variance.
- iii) A random sample of size 10 is taken from a normal population and the following values where calculated for the variable (x) under study:

$$\sum_{i=1}^{10} x_i = 620, \ \sum_{i=1}^{10} x_i^2 = 39016$$

Test the null-hypothesis $H_0: \sigma = 8$ against $H_1: \sigma > 8$ on the basis of the above data. It is given that $\chi^2_{0.05} = 16.92$ with 9 degrees of freedom. 5+5+5

- e) i) State and prove Cauchy-Riemann conditions of a function to be analytic in polar co-ordinate system.
 - ii) Find a bilinear transformation with map the unit circle $|z| \le 1$ onto the unit circle $|w| \le 1$.
 - iii) Find the analytic function of which the following function is the real part

$$\frac{\sin 2x}{\cosh 2y + \cos 2x}.$$
 5+5+5