738/Math. UG/6th Sem./MATH-G-DSE-T-02(A)&(B)/22

U.G. 6th Semester Examination - 2022

MATHEMATICS

[PROGRAMME]

Discipline Specific Elective (DSE)

Course Code: MATH-G-DSE-T-02(A)&(B)

Full Marks : 60 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Symbols and Notations have their usual meanings.

Answer all the questions from selected Option.

OPTION-A

MATH-G-DSE-T-02A

(Linear Programming)

- 1. Answer any **ten** questions:
- $2 \times 10 = 20$
- a) What is meant by a basic feasible solution for a system of equations AX=b of m equations in n unknowns n>m?
- b) Define a convex set with example.
- c) Prove that the vectors (1,1,0), (1,-1,0) and (0,0,1) form a basis for E^3 .
- d) State fundamental theorem of L.P.P.
- e) What is the value of M in Big M method?

- f) What are the assumptions made in the theory of games?
- g) Define Mixed Strategy.
- h) Define saddle point in a game theory.
- i) When artificial variables are used in a L.P.P.?
- j) Prove that $X=\{(x_1,x_2)|x_1 \le 5, x_2 \ge 3\}$ is a convex set.
- k) Write down the standard form of the given LPP Max $z = 6x_1 - 2x_2$

subject to
$$2x_1 - x_2 \le 2$$

 $x_2 \ge 4$
 $x_1, x_2 \ge 0$

- 1) State the optimality condition for existing a basic feasible solution of a LPP.
- m) Prove that dual of the dual is the primal.
- n) Define a two-person zero-sum game.
- o) Define pay-off matrix.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) Solve by simplex method

Max
$$z = 3x_1 + 2x_2$$

subject to
$$x_1 + x_2 \ge 1$$

 $2x_1 + x_2 \le 4$
 $5x_1 + 8x_2 \le 15$
 $x_1, x_2 \ge 0$

Max
$$z = 3x_1 + x_2 + 3x_3$$

subject to
$$\begin{array}{c} 2x_1 + x_2 + x_3 \leq 2 \\ x_1 + 2x_2 + 3x_3 \leq 5 \\ 2x_1 + 2x_2 + x_3 \leq 6 \\ x_1, \ x_2, \ x_3 \geq 0 \end{array}$$

c) Obtain the dual problem of the following LPP

Max
$$z = 2x_1 + 5x_2 + 6x_3$$

subject to
$$5x_1 + 6x_2 - x_3 \le 3$$
$$-2x_1 + x_2 + 4x_3 \le 4$$
$$x_1 - 5x_2 + 3x_3 \le 1$$
$$-3x_1 - 3x_2 + 7x_3 = 6$$
$$x_1, x_2 \ge 0$$

and x₃ is unrestricted in sign.

d) Solve the following transportation problem.

	D_1	D_2	D_3	D_4	\mathbf{a}_{i}
O_1	2	3	11	7	6
O_2	1	0	6	1	1
O_3	5	8	15	9	10
$egin{array}{c} O_1 \ O_2 \ O_3 \ b_j \end{array}$	7	5	3	2	

e) Solve the following assignment problem.

				IV	V
Α	62		50		82
В	71	84	61	73	59
C	87	92	111	71	81
D	48	64	87	77	80

f) For the following Pay-off table, transform the zero sum game into an equivalent LPP.

		Player B	
	9	1	4
Player A	0	6	3
	5	2	8
	l		

3. Answer any **two** questions:

 $10 \times 2 = 20$

a) i) Solve the following transportation problem.

	D_1	D_2	D_3	D_4	a_{i}
O_1	3	7	2	1	11
O_2	9	4	7	3	20
${\rm O}_1 \ {\rm O}_2 \ {\rm O}_3$	10	2	8	3	35
b_{j}	10	5	21	30	_

ii) Solve the following assignment problem.

	I	II	III	IV	
Α	42	35	28	21	
В	30 30	25	20	15	
B C D	30	25	20	15	
D	24	20	16	12	

b) i) Use graphical method to solve the following game.

ii) Solve the game whose pay-off matrix is given by

Player B

3 2 4 0
2 4 2 4
Player A 4 2 4
0 0 4 0 8

c) Products X and Y are to be blended to produce a mixture that contains at least 30% A and 30% B. Product X is 50% A and, 4% B and costs Rs.10 gal; Product Y is 20% A and 10% B and costs Rs.2/gal. Formulate and solve the model to be used to determine a minimal-cost blend.

OPTION-B

MATH-G-DSE-T-02B

(Numerical Methods)

- 1. Answer any **ten** questions :
- $2 \times 10 = 20$
- a) Find the relative error the computation of $y = x^3 + 3x^2 x$, for $x = \sqrt{2}$, taking $\sqrt{2} = 1.414$.
- b) If $y = 6x^4 5x$, find the percentage error in y(1) when the error in x is 0.03
- c) Find the k^{th} difference of a polynomial of degree k.
- d) Show that $\Delta\{\log f(x)\} = \log\left[1 + \frac{\Delta f(x)}{f(x)}\right]$.
- e) Prove that $y' = \frac{dy}{dx} = \frac{1}{h} \left[\Delta y \frac{1}{2} \Delta^2 y + \frac{1}{3} \Delta^3 y \frac{1}{4} \Delta^4 y + \cdots \right]$
- f) Show that the operators E, Δ and ∇ commute.
- g) If $f(x) = e^{\alpha x + \beta}$, prove that f(0), $\Delta f(0)$ and $\Delta^2 f(0)$ are in G.P.
- h) If f(-2) = f(3) = 7 and f(0) = 1, find f(10).
- i) For the eqation $x^3 + x^2 1 = 0$, construct a fixed point iteration form x = g(x) so that the method converges in the interval [0, 1].
- j) Find the minimum number of iterations required to attain an accuracy of 0.001 in an interval [1, 2] using bisection method.

- k) Find the iterative formula for Newton-Raphson method to find the square root of \sqrt{m} .
- 1) Using Newton-Raphson method obtain the root of $x^3 8x 4 = 0$ correct upto two decimal places (Take the initial approximation as $x_0 = 0$).
- m) Use Trapezoidal rule to evaluate $\int_0^6 y(x) dx$ for the data.

3	c	0	1	2	3	4	5	6
į	,	0.146	0.161	0.167	0.19	0.204	0.217	0.23

- n) The Trapezoidal rule applied to $\int_1^3 f(x) dx$ gives the value 8 and the Simpson's one-third rule gives the value 4. Find f(2).
- o) Apply Runge-Kutta method of fourth order to find an approximate value of y(0,2), given that $\frac{dy}{dx} = x + y$ and y(0) = 1.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) A function f(x) defined in [0, 1] in such a way that f(0) = 0, $f\left(\frac{1}{2}\right) = -1$ and f(1) = 0. Find the interpolating polynomial p(x) approximating f(x). If $\left|\frac{d^3f}{dx^3}\right| \le 1$ for $0 \le x \le 1$, show that $|f(x) p(x)| \le \frac{1}{2}$.
 - b) Prove that the Lagrange's interpolation formula can be put in the form

$$P_n(x) = \sum_{r=1}^n \frac{\phi(x)f(x_r)}{(x-x_r)\phi'(x_r)}, \text{ where } \phi(x) = \prod_{r=0}^n (x-x_r).$$
738/Math. (7)

- c) Find a real root of $x^3 8x 4 = 0$ between and 4 by using Newton-Raphson method correct upto four decimal places.
- d) Find the largest eigenvalue and the corresponding eigenvector of the following matrix correct upto four significant figures

$$A = \begin{pmatrix} 9 & 10 & 8 \\ 10 & 5 & -1 \\ 8 & -1 & 3 \end{pmatrix}$$

Take the initial approximate eigen vector $(X_0 = (1, 0, 0)^T)$.

e) Apply Gauss-Seidel iteration method solve the system of equation:

$$8x - y + z = 18$$

 $x + y - 3z = -6$
 $2x + 5y - 2z = 3$

Continue iterations until two successive approximations are identical when rounded to three significant digits.

f) Find y(4.4), by Euler's Modified Method, taking h=0.2, from the differential equation $\frac{dy}{dx} = \frac{2-y^2}{5x}$, y(4) = 1.

- 3. Answer any **two** questions:
 - a) i) If n be a positive integer, prove that

$$\Delta^r x^{(-n)} = (-1)^r n(n+1)(n+2)....(n+r-1)h^r x^{-(n+r)}$$

ii) From the following table find f(8.2) by using Newton's forward interpolation formula

x		8	8.5	9.5	10
f(a	:)	50	57	17	78

b) i) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 3 for the function y = f(x) given in the table.

x	1	2	3	4	5	6
y	2.7183	3.3210	4.0552	4.9530	6.0496	7.3891

- ii) Let f(x)=0 has real root in an interval [a, b] where f(x)=0 can be rewritten as x=g(x). Then prove that the function y=g(x) has a fixed point $\bar{x}=g(\bar{x})$ in [a, b] if $|g(x')| \le c < 1$, for x in [a, b].
- c) i) If $x_{n+1} = \alpha x_n \left(3 \frac{x_n^2}{a}\right) + \beta x_n \left(1 + \frac{a}{x_n^2}\right)$ has a third order convergence to \sqrt{a} , then show that $\beta = 3\alpha$.
 - ii) Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos x} \, dx$ by Simpson's onethird rule, taking 6 intervals.

- d) i) Use Euler's method to approximate the solution of $\frac{dx}{dt} = tx^3 x$ $(0 \le t \le 1), x(0) = 1$ over the interval [0, 1] using four steps.
 - ii) Evaluate y(1) from the differential equation $\frac{dy}{dx} = x^2 + y$ with y(0)=1, taking h=0.5 by the fourth oredr Runge-Kutta method and hence, compare it to original solution.

 $10 \times 2 = 20$