INTERNAL ASSESMENT-2022

KANDI RAJ COLLEGE

DEPARTMENT OF PHYSICS

SEMESTER: 4th STREAM: Honours (Core)

Paper: [Mathematical Physics-III+Elements of Modern Physics+Analog

Systems and Applications]

PAPER CODE: PHY-H-CC-T-08 Full marks: 10

Answer any five questions:

Answer any five questions:

- 1. Find the modulus and the argument of the complex number $z = \frac{3-2i}{4i-1}$.
- 2. Express $\cos^3 \theta$ in terms of powers of $\cos 3\theta$ and $\cos \theta$ by using de Moivre's theorem.
- 3. Solve the equation $z^6 z^5 + 4z^4 6z^3 + 2z^2 8z + 8 = 0$.
- 4. Show that the function $f(z) = \frac{1}{(1-z)}$ is analytic everywhere except at z = 1.
- 5. Find the Fourier series for f(x) = x in the range -2 < x < 2.
- 6. Prove that $\delta(bt) = \delta(t)/|b|$.
- 7. Find the Laplace transform of $f(t) = e^{at}$.

PAPER CODE: PHY-H-CC-T-09

Full marks: 10

Answer any ten questions:

10×1=10

1. Which	of the following is a ma	gic number	
[A] 62	[B] 82	[C]32	[D] 12

5X2=10

5X2=10

 3. The total energy of the electron in the hydrogen atom in the ground state is -13.6 eV. Which of the following is its kinetic energy in the first excited state? [A] 13.6 eV [B]]1.825eV [C] 3.4 eV [D] 6.8 eV 4. Davison Germer experiment indicates
[A] 13.6 eV [B]]1.825eV [C] 3.4 eV [D] 6.8 eV 4. Davison Germer experiment indicates
4. Davison Germer experiment indicates
[A] Interference[B] Polarization [C] Election diffraction [D] Refraction
 5. In Compton scattering, the change in wavelength is maxed if [A] The angle of scattering is 90° [B] The angle of scattering is 60° [C] The angle of scattering is 180° [DThe angle of scattering is 0°
6. The relation between half-life T of a radioactive sample and its mean life τ is: [A] T = 0.693 τ [B] τ = 0.693 T [C] τ = T[D] τ = 2.718 T
7. The most important property of laser is [A] Intensity [B] Directionality [C] Cohearence [D] Number of Photons
8. With reference to nuclear forces which of the following statement is incorrect— [A] Short range [B] Charge independent [C] Velocity dependent [D] Spin dependent
 9. According to quantum mechanics, for the particle moving in a box— [A] The energy levels are discrete and equispaced[B] The energy levels are continuous [C] The energy levels are discrete and not equispaced[D] The energy is always zero
10. For the wave function $\psi = A \exp i(\alpha x - \omega t)$, the probability current density will be $[A]\frac{\hbar\omega}{m} A ^2$ [B] $\frac{\hbar\omega}{\alpha} A ^2$ [C] Zero [D] Infinite
11. Nuclear fusion of protons is possible due to — [A] C-C cycle [B] C-N cycle [C] N-N cycle [D] none of the above

PAPER CODE: PHY-H-CC-T-10

Full marks: 10

Answer any five questions:

1. Define current gains α and β of a transistor. Find the relation between them.

- 2. Draw the circuit diagram of a fixed bias transistor circuit. Write down its advantages and disadvantages.
- 3. What is a pn junction diode? Draw the circuit diagram of a full wave rectifier and explain the working principle.
- 4. What are the characteristics of an ideal opamp? Draw the circuit diagram of a noninverting amplifier and calculate the voltage gain.
- 5. What is Q-point of a transistor circuit? What is meant by a class B amplifier?
- 6. Calculate the rectification efficiency and ripple factor of a half wave rectifier.
- 7. What is feedback in amplifiers? What is the effect of negative feedback on the input impedance of an amplifier?

PHY-H-GE-T-02

Answer any five questions

- 1. What are beats? Show that the beat frequency is equal to the difference between the frequencies of the component oscillations.
- 2. Show that two harmonic oscillations, at right angles to each other of equal amplitudes and equal frequencies but with phases differing by $\pi/2$, are equivalent to a uniform circular motion, the radius of the circle being equal to the amplitude of either oscillation.
- 3. What is meant by phase and group velocity of a travelling wave? Find a relation between them.

Full Marks-10

5×2=10

(2×5=10)

- 4. What is polarization of light waves? How can one determine if a beam of light is unpolarized or circularly polarized?
- 5. Write down the differences between Fraunhofer and Fresnel diffraction.
- 6. What are Newton's rings? How can wavelength of light be measured with Newton's ring experiment?
- 7. What is surface tension? Derive an expression for the excess pressure inside a liquid drop.

PAPER CODE: PHY-H-SEC-T-02

Paper: APPLIED OPTICS

Full marks: 5

Answer Any Five questions of the following:

1×5=5

- 1. Why Pumping mechanism is used for laser mechanism?
- 2. What are the differences between spontaneous and stimulated emission?
- 3. Draw the energy band diagram of He-Ne laser. What is the wavelength of the laser beam?
- 4. What is Numerical Aperture of an optical fiber?
- 5. What are the difference between ordinary photography and Holography?
- 6. How hologram is recorded? Explain.