592/Phs.

UG/4th Sem./PHY-H-CC-T-09/22

U.G. 4th Semester Examination - 2022

PHYSICS

[HONOURS]

Course Code: PHY-H-CC-T-09 (Elements of Modern Physics)

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

1. Answer any **five** questions from the following:

 $2 \times 5 = 10$

- a) What do you mean by threshold frequency and stopping potential?
- b) What is the rest mass of a photon? Find the mass of a photon having frequency v moving with velocity of light c.
- c) Quantum mechanics is probabilistic whereas classical mechanics is deterministic Explain.

- d) Find the de Broglie wavelength of an electron moving with the velocity $v = \frac{4}{5}c$.
- e) Can pair production takes place in vacuum?– Explain your answer.
- f) What is neutrino? What are the basic differences of a neutrino and an anti-neutrino?
- g) What do you mean by degeneracy? Find the degeneracy in case of second excited state of a particle confined in a cubical box.
- h) Show that $|\hat{L}_Z, \hat{L}_+| = \hbar \hat{L}_+$.

GROUP-B

2. Answer any **two** questions from the following:

$$5 \times 2 = 10$$

a) What is Compton Effect? Show that energy of the recoil electron in Compton Effect is always less than the energy of the incident X-ray photon. What will be the value of Compton shift if visible light is used?

1+3+1

b) State and explain Heisenberg's uncertainty principle. Starting from de-Broglie wave concept obtain Heisenberg's uncertainty principle $\Delta x \Delta p_x \ge \hbar$. 2+3

[2]

- c) i) What do you mean by hermitian operator? Show that momentum operator $\frac{\hbar}{i} \frac{\partial}{\partial x}$ is hermitian.
 - ii) The normalized ground state wave function of a single electron atom is

$$\psi(r) = \pi^{-\frac{1}{2}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\frac{Zr}{a_0}},$$
 where the

notations have their usual meaning. Find the probability that the electron in this state will be found at a distance greater

than
$$\frac{2a_0}{Z}$$
. 1+2+2

d) What do you mean by inverse beta decay? How can the continuous nature of beta -ray spectrum be explained theoretically? In case of beta decay is Parity remain conserved? 1+3+1

GROUP-C

Answer any two questions from the following:

$$10 \times 2 = 20$$

[Turn over]

3. a) What are the physical significances of a wave function in quantum mechanics? Obtain one dimensional time-dependent Schrodinger equation for a particle moving in a potential V. 2+2

[3]

- b) A particle is confined to move in one dimensional box with perfectly rigid walls at x = 0 and x = a. Find the normalized wave functions and energy eigen values.
- An electron is confined in a cubical box of width 1 \mathring{A} . Calculate the values of its energy and momentum in ground state.
- 4. a) Obtain Bethe-Wiezsacker semi empirical mass formula describing clearly the contributions of various energy terms.
 - b) What are mass parabolas? What is their importance as regards stability of nucleus?

2+2

- c) A nucleus with A = 235 splits into two nuclei of mass numbers in the ratio 2:1. Find the radii of the nuclei.
- 5. a) What are four level lasers? Give a short description of construction and working principle of RUBY Laser. 2+4
 - b) Define critical radius of a nuclear reactor. 2
 - c) A free neutron decays into a proton, an electron and an anti-neutrino. If M(n) = 1.00898u, M(p) = 1.00759u and M(e) = 0.00055u and the proton is at rest. Find the kinetic energy shared by the electron and anti-neutrino. 2

592/Phs. [4]

592/Phs.

- 6. a) What are the basic assumptions of nuclear shell model?
 - b) State the reason that makes $I = l + \frac{1}{2}$ state more tightly bound than the $I = l \frac{1}{2}$ state in a nucleus.
 - c) Find the ground state angular momentum and parity of $^{27}_{13}$ Al. 2
