593/Phs. UG/4th Sem./PHY-H-CC-T-10/22

U.G. 4th Semester Examination - 2022

PHYSICS

[HONOURS] Course Code : PHY-H-CC-T-10 (Analog Systems and Applications Theory)

Full Marks : 40 Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP-A

- 1. Answer any **five** questions: $2 \times 5 = 10$
 - a) "The barrier potential across a p-n junction diode cannot be measured by placing a voltmeter across the diode terminals." Explain.
 - b) Explain the phenomenon punch through in a transistor.
 - c) A certain Colpitts oscillator uses a tank circuit with L=20 mH, C_1 =200 pF and C_2 = 100 pF. What is the frequency of the oscillation?
 - d) Calculate β of a transistor for which $\alpha = 0.96$. If α changes by 0.1 %, what is the percent change in β ?

- e) Show how a logarithmic amplifier can be built with an OP-AMP.
- f) Why are CC and CB amplifiers not suitable for cascading?
- g) What is the desired position of the Q-point for a minimum distortion and why?
- h) In a Zener diode regulator the series resistance is 25Ω Zener voltage 15 V and load resistance 100Ω . The input voltage varies from 20 to 30V. Calculate the minimum and maximum current in the Zener diode.
- 2. Answer any **two** questions: $5 \times 2 = 10$
 - a) "Negative feedback reduces the gain of an amplifier still this type of feedback is widely used." Why? The open loop gain of an amplifier changes by 6%. If 10 dB negative feedback is applied, calculate the percentage change of the closed loop gain. 2+3
 - b) What is self bias? Draw the circuit diagram showing the self bias of an NPN transistor in the CE configuration. Explain physically how the self biasing resistor improves the stability. 1+2+2

593/Phs.

- c) Why are junction transistors called bipolar devices? What is early effect? With respect to CB output characteristics of a transistor explain the active saturation and cutoff regions. 1+1+3
- d) State the different methods of coupling of amplifiers. Give a brief account of class A, B, AB and C amplifiers. 2+3
- 3. Answer any **two** questions: $10 \times 2=20$
 - a) Discuss the mechanism of amplification obtained in a transistor. What is the origin of the name 'transistor'? Draw a neat circuit diagram of an emitter follower. A transistor having $\alpha = 0.97$ and a reverse saturation current $I_{co} = 13 \,\mu\text{A}$, is operated in CE configuration. What is β for this configuration? If the base current is 240 μA , calculate the emitter current and the collector current. 3+1+2+4
 - b) What are the advantages of using h-parameters (two port representation of transistor) model?
 Draw the small signal low frequency hybrid parameter equivalent circuit of a CE amplifier and derive expression for current gain, voltage gain, input impedance and output impedance.

[3]

A transistor amplifier in CE configuration couples a source of internal resistance $2 k\Omega$ to a load of $20 k\Omega$. Find the input and the output resistances if $h_{ie} = 1$. 1+(2+4)+3

- c) Explain the virtual ground concept in OP-AMP with a diagram. Show how an OP-AMP can be used as summing amplifier, subtractor and integrator. Calculate the actual output voltage of an integrator after 2 seconds for the input voltage of 1 V d.c. Given that input resistance equal to $200 \text{ k}\Omega$ and feedback capacitance $1 \mu \text{F}$. 2+(2+2+2)+2
- d) What is a D/A converter? Explain the principle of operation of a weighted-resistor D/A converter. What is its disadvantage and how is it removed in a ladder converter? In a 4-bit weighted resistor D/A converter the resistor value corresponding to LSB is $16 \text{ k}\Omega$. Find the resistor value corresponding to MSB.

1+3+(1+3)+2

593/Phs.