Dept. of Mathematics – Kandi Raj College – 2nd Sem Internal – 2022

Question for Honours Students dated: 13.08.2022

	First Part: Question for Mathematics Honours Students Answer all Courses (Papers) in Separate Answer Scripts	
	This wor an estatses (rapers) in separate rins wor seripts	
	CC-T-03	10
1.	<u>Answer any Two questions:</u> Prove that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{7}$ and $x_{n+1} = \sqrt{7 + x_n}$, $\forall n \ge 1$ converges to the positive root of the equation $x^2 - x - 7 = 0$.	05
2.	Show that the unit interval [0,1] is uncountable.	05
3.	Show that the series $\frac{a+x}{b+x} + \frac{(a+x)(2a+x)}{(b+x)(2b+x)} + \frac{(a+x)(2a+x)(3a+x)}{(b+x)(2b+x)(3b+x)} + \cdots$ is convergent if a, b, x be all positive and $a < b$.	05
	CC-T-04	10
	CC-1-04	10
1.	<u>Answer any Two questions:</u> If $M(x,y) dx + N(x,y) dy=0$ has one and only one solution, then prove that there exists an infinity of integrating factors.	05
2.	Solve $(2xy^4e^y + 2xy^3 + y)dx + (x^2y^4e^y - x^2y^2 - 3x)dy = 0$	05
3.	Find the singular solution of the equation $x^3 p^2 + x^2 yp + a^3 = 0$	05
	Question for Mathematics Honours ends here	
	Second Part: Question for Other Honours Students	
	GE-T-02	10
		10
A.	<u>Answer any One question:</u> $x^2 + x^2$	05
1.	If $u = \log \left(\frac{x^2 + y^2}{\sqrt{x} + \sqrt{y}}\right)^{-1}$ then show that, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}$.	05
2.	If $y = sin(m sin^{-1}x)^{+}$ then show that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} + (m^2 - n^2)y_n = 0$	05
3.	A function f: $[0, 1] \rightarrow \mathbb{R}$ is defined by $(r, r) \rightarrow r \in \mathbb{Q} \cap [0, 1]$	05
	$f(x) = \begin{cases} x, & x \in \mathbb{Q} \cap [0, 1] \\ 1 - x, & x \in \mathbb{R} \setminus \mathbb{Q} \cap [0, 1] \end{cases}$ Show that 'f' is continuous at 1/2 and discontinuous at every other points in [0, 1].	
B.	Answer any One question:	05
1.	Solve: $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$	05
2.	Find the general and singular solution of the equation $x^3 p^2 + x^2 yp + a^3 = 0$	05
2.	The the general and singular solution of the equation $x - p - x - yp - u = 0$	05
3.	Solve the differential equation $\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} - 4y = x e^{-2x}$	05

Question for Other Honours ends here.....