288/Math. UG/2nd Sem/MATH-H-CC-T-03/22

U.G. 2nd Semester Examination - 2022

MATHEMATICS

[HONOURS]

Course Code : MATH-H-CC-T-03

Full Marks : 60Time : $2\frac{1}{2}$ HoursThe figures in the right-hand margin indicate marks.The symbols and notations have their usual meanings.

- 1. Answer any **ten** questions: $2 \times 10 = 20$
 - a) Construct an injective map from \mathbb{N} to (0,1).
 - b) The Order completeness Axiom is not applicable for Q. Justify your answer.
 - c) What can you say about the set A if Sup A = Inf A?
 - d) Every subset of the set of integers Z has a least element. Justify your answer.
 - e) Show that $\sum_{n=1}^{\infty} \frac{n+1}{n}$ is not convergent.
 - f) Let *a*, *b* be two real numbers with a < b. Show that there exists $r \in \mathbb{Q}$ such that $a < r\sqrt{2} < b$.

[Turn over]

g) Show that $x^2 + 1 = 0$ has no real solution. Which property of real number ensures it?

h) Let
$$a_n - \frac{n!}{n^n}$$
. Show that $a_n \to 0$.

 i) Can you construct a surjective map from N to (0, 1)? Justify your answer.

j) Let
$$|x_n| \rightarrow 2$$
. Does it imply $x_n \rightarrow 2$?

k) Show that Cauchy sequences are bounded.

1) Let
$$I_n = \left(0, \frac{1}{n}\right)$$
. show that $\bigcap_n I_n = \phi$.

- m) Using the Sandwich lemma, prove that $\sqrt{n+1} \sqrt{n} \rightarrow 0$.
- n) Show that $Inf\left\{\frac{1}{n}: n \in \mathbb{N}\right\} = 0$.
- o) Show that the set of natural numbers \mathbb{N} is unbounded.
- 2. Answer any **four** questions: $5 \times 4=20$
 - a) Show that LUB property holds iff GLB property holds true in \mathbb{R} .
 - b) Let *p* be any prime. Then show that there exists no rational number *r* such that $r^2 = p$.

288/Math

[2]

- c) Show that every bounded real sequence has a convergent subsequence.
- d) Construct a convergent subsequence of $\{\sin n\}$.
- e) Not using the Heine-Borel Theorem, show that $\{0\} \bigcup \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ is a compact subset of \mathbb{R} .
- f) Show that ϕ and \mathbb{R} are the only sets in \mathbb{R} which are closed as well as open.
- g) Using the integral test, show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is not convergent.
- 3. Answer any **two** questions: $10 \times 2=20$
 - a) i) Prove that a set is compact in \mathbb{R} iff it is closed and bounded set in \mathbb{R} .
 - ii) Show that the well-ordering is equivalent to the principle of mathematical induction.
 - b) Check whether the following series are convergent or not:

i)
$$\sum_{n=1}^{\infty} \frac{7^{n+1}}{3^{2n}}$$

ii)
$$\sum_{n=1}^{\infty} \frac{n}{n^4 + n^2 + 1}$$

- c) i) Let $x_n = \sum_{n=1}^{\infty} \frac{1}{n!}$. Show that $\lim x_n$ exists and the limit is an irrational number.
 - ii) Show that if $\lim_{n\to\infty} a_n = a$, then

$$\lim_{n\to\infty}\left(\frac{1}{\log n}\right)\left(\sum_{k=1}^n\frac{a_k}{k}\right)=a.$$