290/Math.

UG/2nd Sem/MATH-H-GE-T-02/22

U.G. 2nd Semester Examination - 2022

MATHEMATICS

[HONOURS]

Generic Elective Course (GE)

Course Code: MATH-H-GE-T-02

Full Marks: 60

Time : $2\frac{1}{2}$ Hours

The figures in the right-hand margin indicate marks.

The symbols and notations have their usual meanings.

1. Answer any **ten** questions:

 $2 \times 10 = 20$

- a) Find the maximum value of f(x) = 2 |x|.
- b) If f(t) be odd function of t then prove that $\int_{a}^{x} f(t)dt$ is even.
- c) Examine that Rolle's theorem is applicable on the function f(x)=|x-1| in (0,2).
- d) If f'(x) exist on [0,1], then show that $f(1) f(0) = \frac{e-1}{e^x} f'(x).$
- e) Find the value of the limit $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$.
- f) Applying MVT prove that $\frac{x}{1+x} < log(1+x) < x$, for all x > 0.

[Turn Over]

- g) Find $\int 5^{5^x} 5^{5^x} 5^{5^x} 4x$.
- h) If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, find value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$.
- i) Find the singular solution of : $8ap^3 = 27y$.
- j) Show that the differential equation $\left| \frac{dy}{dx} \right| + |y| = 0$, y(0) = 1 has no solution.
- k) Find the degree and order of the differential equation $\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{2}{3}} = \frac{d^2y}{dx^2}$.
- 1) $I_n = \int_0^{\frac{\pi}{4}} tan^n x \, dx$, show that $I_n + I_{n-2} = \frac{1}{n-1}$.
- m) State the Euler's theorem on homogeneous function.
- n) Find the value of $\int_{-1}^{2} (|x| + [x]) dx$.
- o) Show that differential function is continuous.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) If F(x,y)=0, then show that $\frac{d^2y}{dx^2} = -\frac{(F_y)^2 F_{xx} 2F_x F_y F_{xy} + (F_x)^2 F_{yy}}{(F_y)^3}.$
 - b) If $u(x,y) = \phi(xy) + \sqrt{xy}\psi\left(\frac{y}{x}\right)$, $x \neq 0, y \neq 0$, where ϕ and ψ twice differentiable function, prove that $x^2 \frac{\partial^2 u}{\partial x^2} y^2 \frac{\partial^2 u}{\partial y^2} = 0$.

- c) If $I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$, n being positive integer greater than one, then show that $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$. Hence find the value of $\int_0^{\frac{\pi}{2}} x^5 \sin x \, dx$.
- d) Solve by the method of variation of parameters: $\frac{d^3y}{dx^3} + \frac{dy}{dx} = cosecx.$
- e) State and prove the Cauchy mean value theorem.
- f) Find general and singular solution of $y = px + \sin^{-1} p$.
- g) Solve: $\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} 4y = xe^{-2x}$.
- 3. Answer any **two** questions: $2 \times 10 = 20$
 - a) i) If $y = \frac{\log x}{x}$, then prove that $y_n = \frac{(-1)^n n!}{x^{n+1}} \left[\log x 1 \frac{1}{2} \frac{1}{3} \dots + \frac{1}{n} \right].$
 - ii) If $u = log(x^3 + y^3 + z^3 3xyz)$, then show that $u_{xx} + u_{yy} + u_{zz} = -\frac{1}{(x+y+z)^3}$.
 - b) i) Discuss the continuity of the function at the origin, $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 4

- ii) Find the Maclaurin series expansion of log(1+x) and find the region of validity of the expansion.
- c) i) Show that the solution of $\frac{dy}{dx} + Py = Q$ can also be written in the form

$$y = \frac{Q}{P} - e^{-\int Pdx} \left[C + \int e^{\int Pdx} d\left(\frac{Q}{P}\right) \right].$$
 5

ii) Solve the differential equation by the method of undetermined coefficients:

$$(D^3 + 2D^2 - D - 2)y = e^x + x^2.$$
 5

- d) i) Show that the equation $\frac{1}{(x-1)} + \frac{2}{(x-2)} + \frac{3}{(x-3)} = 0 \text{ has roots in } (1,2)$ and (2,3).
 - ii) If $y = \frac{x^3}{x^2 1}$, then prove that $(y_n)_0 = \begin{cases} 0, & \text{if } n \text{ is even} \\ -n!, & \text{if } n \text{ is odd} \end{cases}, n > 1.$
